PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

60 – 80 Edmondson Avenue, Austral NSW 2179

Austral 1 Pty Ltd – February 2017

DOCUMENT CONTROL

PHASE II ENVIRONMENTAL

SITE ASSESSMENT REPORT

60-80 Edmondson Avenue Austral, NSW 2179

PREPARED FOR

Mr Denis Ghersinich Austral 1 Pty Ltd C/- Vantage Property Pty Ltd Suite 205, 12 O'Connell Street Sydney NSW 2000

Report reference: 1601114Rpt01FinalV02_28Feb17

Date: 28 February 2017

DISTRIBUTION AND REVISION REGISTER

Revision Number	Date	Description	Recipient	Deliverables	
V01	9/12/2016	Final Report 1601114Rpt01FinalV01_9Dec16	Geo-Logix Pty Ltd	1 Electronic Copy	
V01	9/12/2016	Final Report 1601114Rpt01FinalV01_9Dec16	Mr Denis Ghersinich Austral 1 Pty Ltd C/- Vantage Property	1 Electronic Copy	
V01	28/02/2017	Final Report 1601114Rpt01FinalV02_28Feb17	Geo-Logix Pty Ltd	1 Electronic Copy	
V01	28/02/2017	Final Report 1601114Rpt01FinalV02_28Feb17	Mr Denis Ghersinich Austral 1 Pty Ltd C/- Vantage Property	1 Electronic Copy	

Issued by: Geo-Logix Pty Ltd

ABN: 86 1

86 116 892 936

Grant Russell BSc Senior Project Scientist

Ben Pearce BSc Hons, CEnvP# 321 Principal

EXECUTIVE SUMMARY

Geo-Logix Pty Ltd (Geo-Logix) was commissioned by Vantage Property Pty Ltd on behalf of Austral 1 Pty Ltd to conduct a Phase 2 Environmental Site Assessment (ESA) of the property located at 60-80 Edmondson Avenue, Austral NSW. It is understood the property is currently subject to a development application for residential subdivision.

The site is located within a rural residential area on the corner of Sixth Avenue and Edmondson Avenue, Austral NSW. The site, accessed via Edmondson Avenue, consists of one rectangular lot encompassing an area of 17,160 m². At the time of inspection, the site was occupied by two separate residential dwellings and grassed paddocks.

Geo-Logix completed a Phase I ESA for the subject site in September 2016. The Phase I ESA identified a number of historical activities that occurred onsite which had the potential to result in contamination of the land, including:

- Market gardening;
- Current and former sheds and other structures constructed from asbestos cement sheeting and possible lead based paint;
- Stockpiling of and filling of isolated areas with fill of unknown origin across of portions of the site; and
- Small scale panel beating operations in a shed identified at the property.

The objective of the Phase 2 ESA was to conduct an investigation to assess the presence or otherwise of contamination to the land associated with the above identified historical activities. Further, the assessment was to consider the suitability of the site for the proposed residential subdivision.

Given the site history it was concluded there was a potential for contamination of the site. Contaminants of potential concern (COPC) include:

 Pesticides, heavy metals, petroleum, polycyclic aromatic hydrocarbons (PAHs), VOCs, and asbestos.

Market gardening has historically occurred on the site. To assess potential for shallow soil contamination from the application of pesticides a systematic based sampling plan was undertaken consisting of the following:

- Sampling at 24 locations on a 24 m spaced sampling grid. The sample frequency is sufficient to detect circular contamination hotspot with a diameter of 28.22m or greater at a 95 % statistical degree of certainty. The sampling grid meets minimum sampling standards for the site area (17,160 m²) as per NSW EPA (1995); and
- At each location, shallow native soil samples (0-0.15 mbg) were collected for the purpose of analysis, samples were composited in the laboratory from two primary systematic soil samples for analysis of COPC's heavy metals and OCPs.

To assess for hazardous building materials in shallow soils in the vicinity of current and former sheds and areas where suspected ACM have been observed, the following scope of works was completed:

- Collection of one soil sample from within the fire pit on 80 Edmondson Avenue for laboratory analysis of asbestos and lead;
- Collection of four shallow soil samples from within the vicinity of the building footprint of the dwelling on 60 Edmondson Avenue for laboratory analysis of asbestos and lead; and

• Collection of one sample from the base of the planter box for laboratory analysis of asbestos.

A former filled farm dam was identified in the northern portion of the property. A number of small soil stockpiles and brick stockpiles were also observed within the northern portion of the property. The origin of the fill within the former dam and stockpiles is unknown. To assess fill material the following scope of work was undertaken:

- Two trenches were completed with an excavator through the fill soils encountered in the former dam area to the depth of native soils at an approximate maximum depth 1.0 mbg;
- Three fill soil samples were collected at varied depths within each trench in the former dam area;
- Collection of one soil sample from each stockpile;
- Laboratory analysis of soil samples for fill related COPC including TRH, BTEXN, PAHs, heavy metals, OCPs and asbestos.

Field observations also identified small burnt areas / fire pits in the central northern and central north western portions of the site. There is potential for burning of waste materials of an unknown origin. Soil samples were collected at shallow soil depths (0.0 - 0.15 mbg) within the fire pits for laboratory analysis for fill related COPC including TRH, BTEXN, PAHs, heavy metals, OCPs and asbestos.

Council records indicate that a panel beating and spray painting business operated in the large shed at 80 Edmondson Avenue from 1996 to at least 2008. A spray booth was also observed in the shed during at the site inspection. The scope of works completed to assess areas of panel beating / spray painting included:

- Collection of two soil samples from shallow soils in the vicinity of the edge of the shed's concrete slab;
- · Concrete coring and collection of one soil sample from beneath the slab; and
- Laboratory analysis of soil samples for vehicle maintenance related COPC including TRH, BTEX, VOCs, PAHs and heavy metals.

The assessment decision adopted for the investigation states:

• Contamination has not been identified in soil at concentrations above residential land use standards and the site is considered suitable for the proposed residential subdivision.

To accept the assessment decision the following decision rules need to be met:

The results of the systematic soil sampling assessment must comply with the following decision rules:

- The 95% UCL concentration of any COPC does not exceed the assessment criteria;
- No sample exceeds 250% of the assessment criteria; and
- The standard deviation of results must be less than 50% of the assessment criteria.

The results of targeted soil sampling assessment must comply with the following decision rules:

• COPC do not exist in soil at concentrations in excess of the assessment criteria.

The results of systematic and targeted soil samples must comply with the following decision rule regarding asbestos:

 ACM was not visually observed on the site surface or in the subsurface at soil sampling locations.

The results of the assessment identified the following non-conformances with the decision rules:

• Asbestos in the form of loose fibre bundles and as bonded fragments in shallow soil in the vicinity of the dwelling in the southern portion of the site and a fragment of bonded ACM in shallow soil in the south eastern portion of the site.

Further assessment or remediation / management of the above issue is required for the site to be considered suitable for the proposed residential land use.

Heavy metals and benzene were identified in ash within four fire pits in the central western and northern portions of the site. The impact is not considered sufficient to negate the viability of the proposed subdivision; however removal of the fire pit material is recommended based on aesthetic issues.

TABLE OF CONTENTS

1. INTRODUCTION
2. SITE INFORMATION
2.1 Site Identification1
2.2 Site Zoning and Land Use1
2.3 Site Description1
2.4 Surrounding Land Use2
2.5 Topography3
2.6 Surface Water Receptor
2.7 Geology
2.8 Hydrogeology3
2.9 Underground Utilities
3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS
3.1 Geo-Logix (2016) Phase 1 Environmental Site Assessment
4. POTENTIAL SITE CONTAMINATION
5. DATA QUALITY OBJECTIVES
6. ASSESSMENT CRITERIA7
6.1 Soil Assessment Criteria7
7. INVESTIGATION METHODOLOGIES9
7.1 Soil Sampling Methodology11
7.2 Quality Assurance
8. INVESTIGATION RESULTS
8.1 Site Geology12
8.2 Site Hydrogeology12
8.3 Soil Analytical Results12
8.4 Soil Analytical Statistical Summary14
8.5 QA/QC Results14
9. DISCUSSION
10. CONCLUSIONS
11. LIMITATIONS
12. REFERENCES

FIGURES

Figure 1: Site Location MapFigure 2: Site Features MapFigure 3: Sample Location Map

TABLES

Table 1: Summary of Soil Analytical Data – TRH and BTEX
Table 2: Summary of Soil Analytical Data – VOCs
Table 3: Summary of Soil Analytical Data – PAHs
Table 4: Summary of Soil Analytical Data – Metals
Table 5: Summary of Soil Analytical Data – OCPs
Table 6: Summary of Soil Analytical Data – Asbestos
Table 7: Summary of QA / QC Water Analytical Data – TRH and BTEX
Table 8: Summary of QA / QC Water Analytical Data – PAHs
Table 9: Summary of QA / QC Water Analytical Data – Metals

ATTACHMENTS

Attachment A: Planning Certificates under Section 149
Attachment B: Photographic Log
Attachment C: Registered Bore Search
Attachment D: Underground Utilities Plan
Attachment E: Shallow Soil Sample Descriptions
Attachment F: Laboratory Reports
Attachment G ProUCL Statistical Outputs

1. INTRODUCTION

Geo-Logix Pty Ltd (Geo-Logix) was commissioned by Vantage Property Pty Ltd on behalf of Austral 1 Pty Ltd to conduct a Phase 2 Environmental Site Assessment (ESA) of the property located at 60-80 Edmondson Avenue, Austral NSW (Figure 1). It is understood the property is currently subject to a development application for residential subdivision.

Geo-Logix completed a Phase I ESA for the subject site in September 2016. The Phase I ESA identified a number of historical activities that occurred onsite which had the potential to result in contamination of the land, including:

- Market gardening;
- Current and former sheds and other structures constructed from asbestos cement sheeting and possible lead based paint;
- Stockpiling of and filling of isolated areas with fill of unknown origin across of portions of the site; and
- Small scale panel beating operations in a shed identified at the property.

The objective of the Phase 2 ESA was to conduct an investigation to assess the presence or otherwise of contamination to the land associated with the above identified historical activities. Further, the assessment was to consider the suitability of the site for the proposed residential subdivision.

2. SITE INFORMATION

2.1 Site Identification

The investigation area comprises the following property:

Street Address	Lot and Deposited Plan (DP)	Approximate Area (m²)	
60 - 80 Edmondson Avenue, Austral NSW 2179	Lot A DP 416093	17,160	

2.2 Site Zoning and Land Use

Under Liverpool Council Local Environment Plan (LEP) (2008), the site is zoned Low density residential (R2). Planning and Development Certificates are provided in Attachment A.

2.3 Site Description

The following observations were made during site inspection in September 2016 and field works conducted by Geo-Logix in October 2016. A photographic log is presented in Attachment B.

The site is located within a rural residential area on the corner of Sixth Avenue and Edmondson Avenue, Austral NSW. The site, accessed via Edmondson Avenue, consists of one rectangular lot encompassing an area of 17,160 m² (Figure 2). At the time of inspection, the site was occupied by two separate residential dwellings and grassed paddocks.

80 Edmondson Avenue

The northern dwelling on 80 Edmondson Avenue consists of a double storey brick house, landscaped gardens and a below ground swimming pool. A large commercial-style shed is located between the swimming pool and the western site boundary. A collection of smaller sheds and a shipping container is located to the north of the large shed. The large shed contains a mobile spray painting booth, a partially dismantled car, gardening equipment and miscellaneous household items. The concrete flooring appeared to be in good condition. The smaller sheds and shipping container to the north contain numerous miscellaneous household items, tools and equipment. Two cars and a boat were observed stored next to the large shed.

Numerous items including paint tins, gas cylinders, fire extinguishers, scrap metal, household items, tyres and empty oil drums are stored to the north of the residential dwelling. Minor oil staining was noted on the ground surface near one of the drums.

The paddock to the north of the dwelling is grassed with numerous mature eucalypt trees. Several small soil stockpiles are located in the north east corner of paddock along with two stockpiles of brick. The septic tank discharges in the southern portion of the paddock with saturated soils surrounding this area. Several stockpiles of timber, compressed fibre sheeting, vegetation and plastic were noted along the western site boundary.

An open grassed area with some mature trees is also located to the south of the dwelling. A fire pit was observed in this area with several burnt fragments of potential asbestos containing material (ACM) observed within the fire pit. A large truck was located to the in the south west corner of the property.

60 Edmondson Avenue

The southern dwelling at 60 Edmondson Avenue consists of a single storey metal clad and cement fibre sheet house surrounded by gardens and open grassed areas. The dwelling appeared to be in good condition with the exception of peeling paint observed across the exterior. A large diameter asbestos pipe was found to be used as a planter box in the courtyard of the dwelling. The attached garage contained a disused car and household items. Gardening equipment, fuel jerry cans and a spray bottle were also observed in an attached carport to the rear of the garage. Concrete pavements throughout the property appeared to be in good condition with only minor cracking observed.

A small orchard is located to the rear of the dwelling and contains a fire pit that appeared to be used for burning timber and garden waste. Stockpiled timber and scrap metal were observed along the fence line to the north of the dwelling. The remainder of the property consists of an open grassed area with market garden furrows still visible on the ground surface. A large stockpile of timber and green waste is located in the central portion of the grassed area.

2.4 Surrounding Land Use

At the time of the investigation, the surrounding land use comprised the following:

- North Sixth Avenue with rural residential properties beyond;
- South Rural residential properties with Fifth Avenue beyond;
- West Rural residential properties with Fourth Avenue beyond; and
- East Edmondson Avenue with Scalabrini Village beyond.

2.5 Topography

The site slopes gently down towards the north east from an approximate elevation of 74 m Australian Height Datum (AHD) in the south west corner to 69 m AHD in the north east corner of the site.

2.6 Surface Water Receptor

The nearest surface water is an unnamed tributary of Kemps Creek, located approximately 110 m north east of the site.

2.7 Geology

Review of the NSW 1:100,000 Penrith Geological Map (Geological Survey of NSW, 1991) indicates the site is situated on Wianamatta group shale characterised by shale, carbonaceous claystone, laminite, fine to medium-grained lithic sandstone, rare coal and tuff.

2.8 Hydrogeology

It is expected that groundwater would follow the natural regional topography and generally flow north–east. Reference to the NSW Water Groundwater Works Report (NSW Government, 2016) indicates there are no registered groundwater bores within a 500 m radius of the site. The groundwater bore map is presented in Attachment C.

2.9 Underground Utilities

A Dial Before You Dig search was conducted to determine the presence of underground utilities which may act as conduits for contamination migration, both on site and off site (Attachment D). The plans indicate Sydney Water, Telstra utilities run underneath Sixth Avenue to the north and Edmondson Avenue to the east. Telstra utilities enter the site from the north-eastern boundary and terminate at 80 Edmondson Avenue.

3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS

3.1 Geo-Logix (2016) Phase 1 Environmental Site Assessment

Geo-Logix completed a Phase 1 Environmental Site Assessment (ESA) of the site in September 2016. The objective of the Phase I ESA was to conduct a site inspection and collate site historical information in order to establish whether activities have occurred on site which may have resulted in contamination of land. The findings of the report were based on a site inspection conducted on the 6 September 2016 and a review of site historical information.

Site inspection and the review of historical data included the following findings:

 Historical aerial imagery indicated market gardens previously occupied the entire site from at least 1943 till 1965;

- Fragments of burnt cement fibre sheeting were observed during site inspection in a fire pit to the south of the dwelling at 80 Edmondson Avenue. Although fragments did not appear to be asbestos containing, the presence of ACM could not be ruled out. ACM sheeting was observed to have been used in the construction of the dwelling at 60 Edmondson Avenue and appeared to be in relatively good condition although a large diameter asbestos cement pipe was being used as a planter box in the courtyard. Peeling paint was also observed across the exterior of the dwelling at 60 Edmondson Avenue;
- A former farm dam in the northern portion of the property was observed during site inspection to have been filled. A number of small soil stockpiles and brick stockpiles were observed within the northern portion of the property; and
- Council records indicated that a panel beating and spray painting business operated in the large shed at 80 Edmondson Avenue from 1996 to at least 2008. A spray booth was also observed in the shed during the site inspection.

Results of the Phase I ESA indicated that the site and surrounds have a history of rural / residential use with minor commercial activities. Potential sources of contamination noted onsite include:

- Market gardening;
- Hazardous building materials;
- Fill of unknown origin; and
- Operation of a panel beating / spray painting business.

Given the site history Geo-Logix concluded there is a potential for land contamination at the site and further investigation was required to assess the presence or otherwise of such contamination.

4. POTENTIAL SITE CONTAMINATION

Based on the results of the Phase I ESA the following potential contamination issues were identified for the site.

Market Garden Activities

Historical aerial imagery indicated historical market garden activities occurred across the entire site from at least 1943 till 1965. Contaminants of Potential Concern (COPC) associated with market gardening activities include:

- Organochlorine pesticides (OCPs);
- Organophosphate pesticides (OPPs); and
- Heavy metals.

Additionally the storage and use of fuels used for equipment and machinery associated with market gardening and storage may have occurred in and nearby to onsite sheds. Petroleum related COPC include:

- Total Recoverable Hydrocarbons (TRH); and
- Benzene, Toluene, Ethylbenzene and Xylenes (BTEX).

Hazardous Building Materials

Fragments of burnt cement fibre sheeting were observed in a fire pit to the south of the dwelling at 80 Edmondson Avenue. ACM sheeting was also observed to have been used in the construction of the dwelling at 60 Edmondson Avenue and peeling paint was also observed across the exterior of the dwelling at 60 Edmondson Avenue. There is potential for land contamination arising from hazardous building materials including asbestos and lead-based paint.

Fill of Unknown Origin

A former farm dam in the northern portion of the property has been filled and a number of small soil stockpiles and brick stockpiles were observed within the northern portion of the property. Fill may have also been imported during construction of the large shed and dwelling at 80 Edmondson Avenue. COPC associated with fill of unknown origin comprise:

- TRH and BTEX;
- Polycyclic Aromatic Hydrocarbons (PAHs);
- OCPs;
- Polychlorinated Biphenyls (PCBs);
- Heavy metals; and
- Asbestos.

Panel Beating and Spray Painting Operations

Council records and site inspection indicated that a panel beating and spray painting business historically operated in the large shed at 80 Edmondson Avenue. COPC commonly associated with panel beating and spray painting activities include:

- TRH and BTEX;
- PAHs;
- Heavy metals; and
- Volatile Organic Compounds (VOCs).

5. DATA QUALITY OBJECTIVES

The objective of the investigation was to assess the site for contamination that may have originated from historical site activities to determine the suitability of the site for the proposed residential development.

To achieve the objective, Geo-Logix has adopted the seven step Data Quality Objective (DQO) process as described in AS 4482.1-2005, US EPA (2000), DEC (2006) and NEPM (2013).

Step 1: State the problem.

The subject site may be contaminated as a result of previous and current land use and activities. Issues of potential environmental concern for the site include:

- Contamination of the shallow soils from historical market garden activities;
- Contamination of shallow soils from hazardous building materials in current and former structures;
- Contamination to soil from fill of an unknown origin; and

• Contamination of shallow soils from panel beating and spray painting operations.

Step 2: Identify the decision.

Contamination has not been identified in soil at concentrations above residential land use standards and the site is considered suitable for the proposed residential subdivision.

Step 3: Identify inputs into the decision.

- Identification of issues of potential environmental concern (Phase 1 ESA and Section 4);
- Appropriate identification of COPCs (Phase 1 ESA and Section 4);
- Systematic soil sampling and analysis program of shallow soils across the site at a frequency consistent with minimum sampling requirements as defined in NSW EPA (1995);
- A targeted sampling and analysis program of shallow soils in the vicinity of identified potential contamination point sources;
- Appropriate quality assurance / control to enable an evaluation of the reliability of the analytical data; and
- Screening sample analytical results against appropriate assessment criteria for the intended land use (Residential).

Step 4: Define the boundaries of the site.

The project boundary is defined as the area within the site boundary (60-80 Edmondson Avenue, Austral NSW) to a maximum depth of intrusive works at approximately 1.0mbg.

Step 5: Develop a decision rule.

The results of the systematic soil sampling assessment must comply with the following decision rules:

- The 95% UCL concentration of any COPC does not exceed the assessment criteria;
- No sample exceeds 250% of the assessment criteria; and
- The standard deviation of results must be less than 50% of the assessment criteria.

The results of targeted soil sampling assessment must comply with the following decision rules:

• COPC do not exist in soil at concentrations in excess of the assessment criteria.

The results of systematic and targeted soil samples must comply with the following decision rule regarding asbestos:

 ACM was not visually observed on the site surface or in the subsurface at soil sampling locations.

Step 6: Specify acceptable limits on decision errors.

The field sampling methodology, sample preservation techniques, and laboratory analytical procedures must be appropriate to provide confidence in data quality so any comparison against assessment criteria can be considered reliable. This is achieved by defining and comparing results against the Data Quality Indicators (DQIs).

Step 7: Optimise the design for obtaining data.

This is achieved by sampling plan design in consideration of the available site history information, area of investigation, contaminant behaviour in the environment, and likely spatial distribution of contamination.

6. ASSESSMENT CRITERIA

The primary reference for environmental site assessment in Australia is the Amended Assessment of Site Contamination (ASC) National Environmental Protection Measure (NEPM) 1999 (NEPC, 2013). This document includes soil, soil vapour and groundwater criteria for use in evaluating potential contamination risk to human health and the environment.

The application of these investigation levels and screening levels is subject to a range of limitations and their selection and use must be in the context of the conceptual site model (CSM) relating to the nature and distribution of impacts and potential exposure pathways. Each relevant guideline is discussed further below and the adopted screening criteria are presented in summary sample analytical tables attached to this report.

6.1 Soil Assessment Criteria

The following soil assessment criteria were adopted for the investigation.

NEPM Health Based Investigation Level A (HILs A)

HILs are Tier 1 risk based generic assessment criteria used for the assessment of potential risks to human health from chronic exposure to contaminants in soil. They are intentionally conservative and based on a reasonable worst-case scenario for generic land use settings including Residential (HILs A/B), Open Space / Recreational (HILs C) and Commercial Industrial (HILs D). HILs A soil assessment criteria were adopted on the basis the proposed site use is residential.

NEPM Health Screening Levels A (HSLs A)

HSLs are Tier 1 risk based generic soil assessment criteria used for the assessment of potential risks to human health from chronic inhalation exposure of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). They are intentionally conservative and based on a reasonable worst-case scenario for generic soil types, contamination depth and land use settings including Residential (HSLs A/B), Open Space / Recreational (HSLs C) and Commercial Industrial (HSLs D). HSLs A soil assessment criteria were adopted. The generic soil types adopted included:

 HSL A Silt Soil 0 - <1m were conservatively adopted on basis shallow soil was disturbed and of variable composition.

NEPM Management Limits – Residential

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure.

• Residential, parkland and public open space limits in fine grained soils are adopted based on the proposed residential land use.

NEPM (1999) Amendment Asbestos Criteria

Asbestos assessment criteria are included in NEPM (1999) Amendment. Those criteria apply to the assessment of known and suspected asbestos contamination in soil and address friable and non-friable forms of asbestos. The presence of asbestos contamination was not known at the time of investigation therefore its investigation was of a preliminary nature. Given the preliminary assessment the following assessment criteria was adopted:

• No visible ACM on site surface or in the subsurface at soil sampling locations.

If ACM is encountered further assessment may be warranted.

Ecological Assessment

Ecological Investigation Levels (EILs) are used for the protection of terrestrial ecosystems and have been derived for common contaminants in soil based on a species sensitivity distribution model developed for Australian conditions. EILs apply principally to contaminants in the top 2 m of soil which corresponds to the root zone and habitation zone of many species. EILs have been developed for the following contaminants:

- Arsenic (As);
- Copper (Cu);
- Chromium III (CrIII);
- Nickel (Ni);
- Lead (Pb);
- Zinc (Zn)
- DDT; and
- Naphthalene.

EILs depend on specific soil physicochemical properties and land use scenarios. The protection levels for generic land use settings are:

- 99% for areas of ecological significance;
- 80% for urban residential areas and public open space; and
- 60% for commercial and industrial uses.

80% protection was adopted on the basis the proposed land use is residential. Two soil samples (S4/0.0-0.15 and S22/0.0-0.15) were sent to the laboratory for analysis of cation exchange capacity (CEC), pH and clay content to determine appropriate EILs for site soils.

Contaminant	EIL (mg/kg)	Rationale
As	100	Value for urban residential and public open space irrespective of physicochemical properties.
Cu	100	Value for urban residential and public open space based on an average CEC of 9.5, pH of 5.0 and iron content of 3.95%
CrIII	560	Value for urban residential and public open space based on average clay content of 13 % and iron content of 3.95%

A summary of EILs adopted for site and rationale are detailed below.

Contaminant	EIL (mg/kg)	Rationale
Ni	160	Value for urban residential and public open space based on an average CEC of 9.5, pH of 5.0 and iron content of 3.95%
Pb	1100	Value for urban residential and public open space based on a background concentration of 20 mg/kg
Zn	260	Value for urban residential and public open space based on an average CEC of 9.5, pH of 5.0 and iron content of 3.95%
DDT	180	Value for urban residential and public open space irrespective of physicochemical
Naphthalene	170	properties.

In addition, Ecological Screening Levels (ESLs) have been developed. The ESLs are based on a review of Canadian guidance for petroleum hydrocarbons contamination in coarse and fine grained soil types and application of the Australian methodology. A summary of ESLs adopted for site and rationale are detailed below.

Contaminant	EIL (mg/kg)	Rationale
F1 C6-C10	180	
F2 C10-C16	120	
F3 C16-C34	1300	
F4 C34-C40	5600	
Benzene	65	Value for urban residential/public open space in fine grained soil.
Toluene	105	
Ethylbenzene	125	
Xylenes (Total)	45	
Benzo(a)pyrene	0.7	

7. INVESTIGATION METHODOLOGIES

Geo-Logix conducted environmental investigations of the former dam on 6 September and the remainder of the site on 5 and 6 October 2016. Sample locations are presented in Figure 3. The investigation methodology undertaken for each issue of potential environmental concern is presented below.

Market Garden Activities

Market gardening has historically occurred on the site. There is potential for shallow soil contamination from the application of pesticides. A systematic based sampling plan was undertaken consisting of the following scope of works:

Sampling at 24 locations (S1 to 24) on a 24 m spaced sampling grid. The sample frequency is sufficient to detect a circular contamination hotspot with a diameter of 28.22m or greater at a 95 % statistical degree of certainty. The sampling grid meets minimum sampling standards for the site area (17,160 m²) as per NSW EPA (1995); and

• At each location, shallow native soil samples (0-0.15 mbg) were collected for the purpose of analysis, samples were composited in the laboratory from two primary systematic soil samples for analysis of COPC's heavy metals and OCPs.

Composite Sample Identification	Parent Samples	Composite Sample Identification	Samples
C1	S1/0.0-0.15 and S2/0.0-0.15	C7	S13/0.0-0.15 and S14/0.0-0.15
C2	S3/0.0-0.15 and S4/0.0-0.15	C8	S15/0.0-0.15 and S16/0.0-0.15
С3	S5/0.0-0.15 and S6/0.0-0.15	C9	S17/0.0-0.15 and S18/0.0-0.15
C4	S7/0.0-0.15 and S8/0.0-0.15	C10	S19/0.0-0.15 and S20/0.0-0.15
C5	S9/0.0-0.15 and S10/0.0-0.15	C11	S21/0.0-0.15 and S22/0.0-0.15
C6	S11/0.0-0.15 and S12/0.0-0.15	C12	S23/0.0-0.15 and S24/0.0-0.15

Former and Current Building Structures Containing Hazardous Building Materials

There is potential for contamination of the land due to identification of the following potential contamination issues relating to hazardous building materials:

- Fragments of burnt cement fibre sheeting was observed in a fire pit to the south of the residential dwelling on 80 Edmondson Avenue;
- ACM sheeting was observed to have been used in the construction of the dwelling on 60 Edmondson Avenue;
- An asbestos pipe was observed used as a planter box in the courtyard of the dwelling on 60 Edmondson Avenue; and
- Peeling paint was observed across the exterior of the dwelling on 60 Edmondson Avenue.

To assess shallow soils in the vicinity of potential sources areas the following scope of works was completed:

- Collection of one shallow soil sample (SS1) from within the fire pit on 80 Edmondson Avenue for laboratory analysis of asbestos and lead;
- Collection of four shallow soil samples (SS2 to SS5) from within the vicinity of the building footprint of the dwelling on 60 Edmondson Avenue for laboratory analysis of asbestos and lead; and
- Collection of one sample (AC1) from the base of the planter box for laboratory analysis of asbestos.

Fill of an Unknown Origin

A former farm dam in the northern portion of the property was identified to have been filled. A number of small soil stockpiles and brick stockpiles were also observed within the northern portion of the property. The origin of the fill within the former dam and stockpiles is unknown. To assess fill material within the former dam the following scope of work was undertaken:

- Two trenches (T1 and T2) were completed with an excavator through the fill soils encountered in the former dam area to the depth of native soils at an approximate maximum depth of underlying native soil (1.0 mbg);
- Three fill soil samples (T1/1 to T1/3) were collected a varied depths within trench T1 and three fill soil samples (T2/1 to T2/3) were collected a varied depths within trench T2;
- Laboratory analysis of soil samples for fill related COPC including TRH, BTEXN, PAHs, heavy metals, OCPs and asbestos.

To assess fill material within two stockpiles located in the northeast portion of the site the following scope of works was completed:

- Collection of one soil sample from each stockpile (SP1 and SP2);
- Laboratory analysis of soil samples for fill related COPC including TRH, BTEXN, PAHs, heavy metals, OCPs and asbestos.

In addition field observations identified small burnt areas / fire pits in the central northern and central north western portions of the site. There is potential for burning of waste materials of an unknown origin. Soil samples SS8 to SS10 were collected at shallow soil depths (0.0 - 0.15 mbg) within the fire pits for laboratory analysis for fill related COPC including TRH, BTEXN, PAHs, heavy metals, OCPs and asbestos.

Panel Beating and Spray Painting Operations

Council records indicate that a panel beating and spray painting business operated in the large shed at 80 Edmondson Avenue from 1996 to at least 2008. A spray booth was also observed in the shed during at the site inspection. Contamination of panel beating and spray painting operations would result from spills of solvents and present in shallow soils. The scope of works completed to assess areas of panel beating / spray painting included:

- Collection of two soil samples (SS6 and SS7) from shallow soils in the vicinity of the edge of the shed's concrete slab;
- Concrete coring and collection of one soil sample (BH1) from beneath the slab; and
- Laboratory analysis of soil samples for vehicle maintenance related COPC including TRH, BTEX, VOCs, PAHs and heavy metals.

7.1 Soil Sampling Methodology

Trenches within the former dam area were completed using a 5.5 tonne excavator. Trenches were completed to a maximum depth of approximately 1.0 mbg. Soil samples were collected directly from the bucket of the excavator.

Shallow borings S1 to S24, SS1 to SS10 and BH1 were completed using a hand auger to depths of approximately 0.15 mbg. The soil samples were collected directly from the hand auger.

Soil samples were placed in laboratory prepared jars, labelled and placed on ice in an esky for transport under chain of custody to a NATA Accredited Laboratory for the analysis of the COPC.

Soil sample descriptions for shallow soil samples are presented in Attachment E.

7.2 Quality Assurance

Quality control (QC) sampling was undertaken in general accordance with specifications outlined in AS4482.1, *Guide to Sampling and Investigation of Potentially Contaminated Soil.* Field QC samples were collected and included the following:

Sample Identification	Sample Type	Sample Matrix	Rate of Collection
DS1	Field duplicate of T1/2	Soil	1 in 20 samples
TS1	Field triplicate of T1/2	Soil	1 in 20 samples
DS2	Field duplicate of S22/0.0-0.15	Soil	1 in 20 samples
TS2	Field triplicate of S22/0.0-0.15	Soil	1 in 20 samples
R1	Soil sampling equipment rinsate	Water	1 per day of hand auger borings
R2	Soil sampling equipment rinsate	Water	1 per day of hand auger borings

Note - Rate of QC sample collection specified as 1 in 20 samples in AS4482.1

The laboratory internal QC procedures are consistent with NEPM policy on laboratory analysis of contaminated soils.

8. INVESTIGATION RESULTS

8.1 Site Geology

The geology encountered at the site typically comprised moderate brown, damp, loose, sandy silty topsoil, with clay and gravel between 0.0 to 0.2 mbg underlain by brownish yellow, damp, soft to firm low plasticity Clay from 0.2 mbg.

Some fill, likely reworked natural low plasticity clay, was encountered surrounding the large shed. A number of fire pits were observed in the central and northern portion of the property which contained ash, charcoal and anthropogenic material including glass, metal and melted plastics.

A single fragment of bonded ACM was encountered in reworked natural sandy silty topsoil at sample location S21.

8.2 Site Hydrogeology

Groundwater was not encountered during intrusive investigations.

8.3 Soil Analytical Results

Soil analytical results are summarised in Tables 1 through 6. Laboratory reports are presented in Attachment F.

TRH and BTEX

Benzene was detected at concentrations marginally above health screening levels criteria in shallow soil at boring location SS9 completed within the fire pit located in the on the north western portion of the site (Table 1).

Petroleum hydrocarbons were not detected at concentrations above assessment criteria in all other soil samples analysed.

VOCs

With the exception of benzene noted above, VOCs were not detected in soil at concentrations above assessment criteria in all samples analysed (Table 2).

PAHs

PAHs were not detected in soil at concentrations above laboratory reporting limits in all samples analysed (Table 3).

Metals

Chromium was detected at concentrations above Residential HILs in the duplicate (DS2) and triplicate (TS2) samples of composite soil sample C11 and individual shallow soil samples SS1 and SS9 (Table 4).

Copper was detected at concentrations above Residential EILs in composite sample C12 (S23 and S24) and in individual samples SS1, SS8 and SS9.

Lead was detected at concentrations above Residential HILs and EILs in in samples collected from SS1, and SS9. Lead was detected at concentrations above Residential HILs in sample collected from SS10.

Zinc was detected at concentrations above Residential EILs in composite samples C10 and C11 and individual shallow soil sample locations SS1, SS8, SS9 and SS10.

Arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc were not detected at concentrations greater than the assessment criteria in remaining soil samples analysed.

OCPs

OCPs were not reported in any soil sample at concentrations above assessment criteria (Table 5).

Asbestos

Asbestos was detected by the laboratory in the form of loose fibre bundles in the soil sample collected at location SS2 (Table 6). Asbestos was also detected by the laboratory in the fragment sample collected at location SS2.

Asbestos was visually identified as single fragment of bonded ACM within reworked natural sandy silty topsoil at sample location S21. The laboratory confirmed the sample contained asbestos.

Asbestos was not identified in soil at any other sample location.

8.4 Soil Analytical Statistical Summary

Statistical analysis of grid based primary soil sample analytical results has been undertaken where COPC were detected at concentrations greater than the laboratory reporting limits. Statistical summary is presented in the following table. Statistical computation output sheets are presented in Attachment G.

СОРС	# Sample	# Sample Detections	Residential Assessment Criteria* (mg/kg)	Min (mg/kg)	Max (mg/kg)	Mean	95% UCL	Standard Deviation
Arsenic	12	8	50	<2	17	6.7	8.793	4.272
Chromium	12	9	50	13	49	28.17	34.64	12.49
Copper	12	11	50	11	58	24.92	31.92	13.51
Lead	12	11	150	25	69	40.75	48.18	14.33
Mercury	12	2	20	0.09	0.15	0.12	0.08	0.04
Nickel	12	10	80	5.6	14	8.425	9.884	2.814
Zinc	12	12	130	19	280	60.5	106.1	72.06
4.4'-DDE	12	1	NA	<0.05	0.13	0.033	**	**
Chlordanes - Total	12	1	25	<0.1	0.1	0.054	**	**

* Residential Assessment Criteria selected based on the lowest soil assessment criteria (HILs, EILs etc) used. As grid based samples were composited from two individual samples half the assessment criteria has been adopted.

**Only one distinct value detected. ProUCL was unable to process the data set. Mean values calculated using half laboratory reporting limits (LOR) for all non-detects.

ProUCL data output is presented in Attachment G.

The sample data for all grid based samples collected meets the following qualifiers:

- The 95% Upper Confidence Limit of COPC concentration data does not exceed the soil assessment criteria;
- No single sample exceeds 250% of the soil COPC assessment criteria; and
- The standard deviation of COPC analytical results is less than 50% of the soil assessment criteria.

8.5 QA/QC Results

Soil duplicate/triplicate results are within the adopted acceptance criteria of 30-50% (AS4482.1) relative percent difference (RPD) with the exception of the following:

- Arsenic in soil triplicate pair T1/2/0.8 and TS1; and
- Arsenic in soil triplicate pair C11 and TS2.

The RPD outliers are attributed to the low levels of metals (<5 time LOR) and heterogeneity of the soils.

COPC were not detected at concentrations above laboratory reporting limits in the rinsate samples collected from the hand auger indicating decontamination procedures were adequate to prevent cross contamination (Tables 7 to 9).

Report #	Analysis Within Holding Time	Surrogate Recovery		Lab. Duplicate RPD % Recovery		Lab. Control Sample	Lab Method Blank		
515269-S	~	1		√	~	~	~		
515294-S	~	1		1	×	~	~		
518936-S	~	1		1	1	~	~		
519059-S	1	1		✓	~	1	~		
	√ =	Pass X =	Fail - :	= not required * = re	fer to report text				
Quality Assurance Cri	teria		Qualit	Quality Control Criteria					
Holding Times			Accuracy						
VOCs 14 days soil / wa	ater		Surrogate, matrix spike, control sample 70-130% and 30-130% for Phenols.						
SVOCs 7 days water, 1	4 days soil		Surrogate recovery 50-150% and 20-130% for Phenols.						
Pesticides 7 days water, 14 days soil				Precision					
Metals 6 months, Mercury 28 days				Method Blank Not detected					
				Duplicate - No limit (<10xEQL), 0-50% (10-20xEQL), 0-200% (>20xEQL)					

A summary of Laboratory QA/QC data is presented on the following table.

The laboratory QA/QC was within the acceptable limits with the exception of the following:

Report # 515294-S

The laboratory duplicate RPD% exceeded acceptance criteria of 30 - 50% for o-xylene and total xylenes however was accepted under the laboratory QC guidelines as the results were <10 times the LOR.

The matrix spike recovery was outside of the recommended acceptance criteria for naphthalene. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference.

Geo-Logix accepts the integrity of the analytical data.

9. DISCUSSION

Fire Pits

Benzene, chromium, copper, lead and zinc were variously detected at concentrations above assessment criteria in soil samples SS1, SS8, SS9 and SS10 collected from separate fire pits located in the central western and northern portions of the site. While the exceedances of the assessment criteria in the fire pit samples constitute a non-conformance of the decision rules, the extent of impact at each location is minor and is not considered sufficient to negate the viability of the proposed subdivision. However, removal of the fire pit material is recommended based on aesthetic issues.

Asbestos Impact to Soils

Asbestos in the form of loose fibre bundles was detected in the shallow soil sample SS2 collected adjacent to the residential dwelling in the southern portion of the site. Asbestos was also confirmed by the laboratory in a fragment of fibre cement collected from the same location. The asbestos detected is likely the result of weathering of broken fragments originating from the ACM sheet cladding of the nearby dwelling. Given the presence of friable and bonded asbestos in shallow soils the occurrence is a non-conformance with the decision rules and requires additional assessment or remediation / management in order for site to be suitable for the proposed residential land use.

The asbestos impact to soils in the vicinity of SS2 however is likely limited in extent given:

- Asbestos was not detected in any other shallow soil sample collected in the vicinity of the dwelling; and
- Field observations did not identify widespread impact to soils by fragments of bonded ACM in the vicinity of the dwelling.

One fragment of bonded ACM was also identified within reworked natural sandy silty topsoil at sample location S21 and represents a non-conformance of the decision rules. It is not know if the fragment is a one off random occurrence or indicative of more widespread impact. Further assessment to determine the extent and magnitude of bonded ACM in soil would be required to confirm the suitability for residential use or define remediation / management requirements.

Metals Impact to Soils

Heavy metals chromium, copper and zinc were also detected at concentrations marginally above ecological assessment criteria in four grid based locations. The exceedences do not represent a non-conformance to the decision rules as the results meet the following:

- The 95% Upper Confidence Limit of COPC concentration data does not exceed the soil assessment criteria;
- No single sample exceeds 250% of the soil COPC assessment criteria; and
- The standard deviation of COPC analytical results is less than 50% of the soil assessment criteria.

10. CONCLUSIONS

The results of the assessment identified the following non-conformances with the decision rules:

• Asbestos in the form of loose fibre bundles and as bonded fragments in shallow soil in the vicinity of the dwelling in the southern portion of the site and a fragment of bonded ACM in shallow soil in the south-eastern portion of the site.

Further assessment or remediation / management of the above issues is required for the site to be considered suitable for the proposed residential land use.

Heavy metals and benzene were identified in ash within four fire pits in the central western and northern portions of the site. The impact is not considered sufficient to negate the viability of the proposed subdivision; however, removal of the fire pit material is recommended based on aesthetic issues.

No other contaminants of concern were detected at concentrations greater than residential landuse criteria in the soil samples analysed.

11. LIMITATIONS

This report should be read in full, and no executive summary, conclusion or other section of the report may be used or relied on in isolation, or taken as representative of the report as a whole. No responsibility is accepted by Geo-Logix, and any duty of care that may arise but for this statement is excluded, in relation to any use of any part of this report other than on this basis.

This report has been prepared for the sole benefit of and use by the Client. No other person may rely on the report for any purpose whatsoever except with Geo-Logix's express written consent. Any duty of care to third parties that would or may arise in respect of persons other than the Client, but for this statement, is excluded.

Geo-Logix owns the copyright in this report. No copies of this report are to be made or distributed by any person without express written consent to do so from Geo-Logix. If the Client provides a copy of this report to a third party, without Geo-Logix's consent, the Client indemnifies Geo-Logix against all loss, including without limitation consequential loss, damage and/or liability, howsoever arising, in connection with any use or reliance by a Third Party.

The works undertaken by Geo-Logix are based solely on the scope of works, as agreed by the Client (Scope of Works). No other investigations, sampling, monitoring works or reporting will be carried out other than as expressly provided in the Scope of Works. **A COPY OF THE SCOPE OF WORKS IS AVAILABLE ON REQUEST.**

To the extent permitted by law, Geo-Logix makes no warranties or representations as to the:

- a. suitability of the Site for any specific use, or category of use, or
- b. potential statutory requirements for remediation, if any, of the Site,
- c. approvals, if any, that may be needed in respect of any use or category of use, or
- d. level of remediation, if any, that is warranted to render the Site suitable for any specific use, or category of use, or
- e. level of ongoing monitoring of Site conditions, if any, that is required in respect of any specific use, or category of use, or
- f. presence, extent or absence of any substance in, on or under the Site, other than as expressly stated in this report.

The conclusions stated in this report are based solely on the information, Scope of Works, analysis and data that are stated or expressly referred to in this report.

To the extent that the information and data relied upon to prepare this report has been conveyed to Geo-Logix by the Client or third parties orally or in the form of documents, Geo-Logix has assumed that the information and data are completely accurate and has not sought independently to verify the accuracy of the information or data. Geo-Logix assumes no responsibility or duty of care in respect of any errors or omissions in the information or data provided to it.

Without limiting the paragraph above, where laboratory tests have been carried out by others on Geo-Logix's behalf, the tests are reproduced in this report on the assumption that the tests are accurate. Geo-Logix has not sought independently to verify the accuracy of those tests and assumes no responsibility in respect of them.

Geo-Logix assumes no responsibility in respect of any changes in the condition of the Site which have occurred since the time when Geo-Logix gathered data and/or took samples from the Site on its site inspections dated **6 September and 5 to 6 October 2016**.

Given the nature of asbestos, and the difficulties involved in identifying asbestos fibres, despite the exercise of all reasonable due care and diligence, thorough investigations may not always reveal its presence in either buildings or fill. Even if asbestos has been tested for and those tests' results do not reveal the presence of asbestos at those specific points of sampling, asbestos or asbestos containing materials may still be present at the Site, particularly if fill has been imported at any time, buildings constructed prior to 1980 have been demolished on the Site or materials from such buildings have been disposed of on the Site.

Where the Scope of Works does not include offsite investigations, Geo-Logix provides no warranty as to offsite conditions, including the extent if any to which substances in the Site may be emanating off site, and if so whether any adjoining sites have been or may be impacted by contamination originating from the Site.

Where the Scope of Works does not include the investigation, sampling, monitoring or other testing of groundwater in, on or under the Site, Geo-Logix provides no warranty or representation as to the quality of groundwater on the Site or the actual or potential migration of contamination in groundwater across or off the Site.

Subsurface site conditions are typically heterogeneous, and may change with time. Samples taken from different points on the Site may not enable inferences to be drawn about the condition of areas of the Site significantly removed from the sample points, or about the condition of any part of the Site whatsoever, in particular where the proposed inferences are to be drawn a long time after the date of the report.

Geo-Logix has prepared this report with the diligence, care and skill which a reasonable person would expect from a reputable environmental consultancy and in accordance with environmental regulatory authority and industry standards, guidelines and assessment criteria applicable as at the date of this report. Industry standards and environmental criteria change frequently, and may change at any time after the date of this report.

12. REFERENCES

ANZECC & ARMECC (2000) Australian and New Zealand Guidelines for Freshwater and Marine Water, Australia and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

Australian Standard (2005) AS 4482.1-2005 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 1: Volatile and Semi-volatile compounds. Standards Australia.

Australian Standard (2005) AS 4482.2-1999 Guide to the investigation and sampling of sites with potentially contaminated soil. Part 2: Volatile substances. Standards Australia.

Geo-Logix (2015) Phase 1 Environment Site Assessment Report, 60 - 80 Edmondson Avenue, Austral NSW. Report Ref 1601067Rpt02FinalV01_22Sep16.

Geological Survey of New South Wales (1991), Penrith 1:100,000 Geological Series Sheet 9030, NSW Department of Mineral Resources, Sydney.

Google Earth (2016). Austral, NSW.

NEPC (1999) *Amended National Environmental Protection Measure (2013)*, National Environmental Protection Council.

NSW DEC (2006) *Guidelines for NSW Site Auditor Scheme*, NSW Department of Environment and Conservation.

NSW EPA (1995) *Contaminated Sites Sampling Design Guidelines*, NSW Environmental Protection Authority.

NSW Government (2012) *NSW Natural Resource Atlas*, http://www.nratlas.nsw.gov.au. Accessed 09/05/12.

US EPA (2000) *Data Quality Objectives Process for Hazardous Wastes Site Investigations EPAQA/G-4HW*, United States Environmental Protection Agency. **FIGURES**

- Former farm dam 1
- 2
- Stockpiles of soil Stockpiles of bricks
- 3 4 Septic discharge area
- 5 6 Various stockpiles or timber, vegetation and scrap metal
- Shipping container
- 7 8 Shed with various materials stored
- 8 Storage of paint cans, gas cylinders, oil drums
 9 Large farm shed with spray booth
 10 Attached residential unit

- Swimming pool
 Residential dwelling (80 Edmondson Avenue)
- 13 Asphalt driveway14 Fire pit with fragments of cement sheeting
- 15 Truck
- 16 Stockpile of timber and vegetation17 Storage of timber and scrap metal
- 18 Asbestos pipe planter box
- 19 Backyard with orchard
- 20 Residential dwelling (60 Edmondson Avenue)
 21 Former market gardening area

21

SIXTH AVENU

Geo-Logix

COPYRIGHT Other than for the sole purpose of work associated with the Phase 2 Environmental Site Assessment as detailed herein, the use, reproduction and/or publication of this figure wholly, or in part, whether or not modified or altered, is strictly prohibited.

Phase 2 Environmental Site Assessment

60 - 80 Edmondson Avenue Austral, New South Wales

Project No. 1601114

Figure 2

COPYRIGHT Other than for the sole purpose of work associated with the Phase 2 Environmental Site Assessment as detailed herein, the use, reproduction and/or publication of this figure wholly, or in part, whether or not modified or altered, is strictly prohibited.

Geo-Logix

SAMPLING LOCATIONS

Phase 2 Environmental Site Assessment 60 - 80 Edmondson Avenue Austral, New South Wales

Project No. 1601114

Figure 3

TABLES

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	T1/1/0.2	T1/2/0.8	DS1	RPD_DS1	TS1
	HSLs - A/B	Management	ESLs	Depth (m)	0.2	0.8	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soll	Date	6/09/2016	6/09/2016	6/09/2016	-	6/09/2016
TRH C6-C10	-	800	-		< 20	< 20	< 20	пс	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	40	-	180		< 20	< 20	< 20	пс	< 20
TRH >C10-C16	-	1,000	-		< 50	< 50	< 50	пс	< 50
TRH >C10-C16 less Naphthalene (F2)	230	-	120		< 50	< 50	< 50	nc	< 50
TRH >C16-C34	-	3,500	1,300		< 100	< 100	160	пс	< 100
TRH >C34-C40	-	10,000	5,600		< 100	< 100	< 100	пс	< 100
Benzene	0.6	-	65		< 0.1	< 0.1	< 0.1	пс	< 0.1
Toluene	390	-	105		< 0.1	< 0.1	< 0.1	пс	< 0.1
Ethylbenzene	NL	-	125		< 0.1	< 0.1	< 0.1	пс	< 0.1
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	пс	< 0.2
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	пс	< 0.1
Xylenes - Total	95	-	45		< 0.3	< 0.3	< 0.3	ПС	< 0.3
Naphthalene	4	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	RPD_TS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.2	0.3	0.5	0.2
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soll	Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
TRH C6-C10	-	800	-		пс	< 20	< 20	< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	40	-	180		пс	< 20	< 20	< 20	< 20
TRH >C10-C16	-	1,000	-		пс	< 50	56	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	230	-	120		пс	< 50	56	< 50	< 50
TRH >C16-C34	-	3,500	1,300		пс	160	230	< 100	130
TRH >C34-C40	-	10,000	5,600		пс	< 100	< 100	< 100	< 100
Benzene	0.6	-	65		пс	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	390	-	105		пс	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	NL	-	125		пс	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-		пс	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-		пс	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	95	-	45		ПС	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	4	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS1	SS6	SS7	SS8	SS9
	HSLs - A/B	Management	ESLs	Depth (m)	-	-	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
TRH C6-C10	-	800	-		< 20			< 20	< 20
TRH C ₆ -C ₁₀ less BTEX (F1)	40	-	180		< 20			< 20	< 20
TRH >C10-C16	-	1,000	-		< 50			< 50	< 50
TRH >C10-C16 less Naphthalene (F2)	230	-	120		< 50			< 50	< 50
TRH >C16-C34	-	3,500	1,300		100			160	< 100
TRH >C34-C40	-	10,000	5,600		< 100			< 100	< 100
Benzene	0.6	-	65		< 0.1	< 0.1	< 0.1	< 0.1	0.7
Toluene	390	-	105		< 0.1	< 0.1	< 0.1	< 0.1	0.2
Ethylbenzene	NL	-	125		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	95	-	45		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	4	-	-		< 0.5			< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS10	BH1/0.1-0.2	SP1/0.3-0.35	SP2/0.3-0.35	
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.1-0.2	0.3-0.35	0.3-0.35	
	Silt	Limits	Urban Res	Туре	-	-	-	-	
	0 to <1 m	Res/Park	Fine Soil	Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
TRH C ₆ -C ₁₀	-	800	-		< 20	< 20	< 20	< 20	
TRH C ₆ -C ₁₀ less BTEX (F1)	40	-	180		< 20	< 20	< 20	< 20	
TRH >C10-C16	-	1,000	-		78	< 50	< 50	< 50	
TRH >C10-C16 less Naphthalene (F2)	230	-	120		78	< 50	< 50	< 50	
TRH >C16-C34	-	3,500	1,300		300	300	< 100	< 100	
TRH >C34-C40	-	10,000	5,600		< 100	240	< 100	< 100	
Benzene	0.6	-	65		0.2	< 0.1	< 0.1	< 0.1	
Toluene	390	-	105		0.2	< 0.1	< 0.1	< 0.1	
Ethylbenzene	NL	-	125		0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total	95	-	45		< 0.3	< 0.3	< 0.3	< 0.3	
Naphthalene	4	-	-		< 0.5	< 0.5	< 0.5	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	T1/1/0.2	T1/2/0.8	DS1	RPD_DS1	TS1
	HSLs - A/B	Management	ESLs	Depth (m)	0.2	0.8	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	6/09/2016	6/09/2016	6/09/2016	-	6/09/2016
1.1-Dichloroethane	-	-	-						
1.1-Dichloroethene	-	-	-						
1.1.1-Trichloroethane	-	-	-						
1.1.1.2-Tetrachloroethane	-	-	-						
1.1.2-Trichloroethane	-	-	-						
1.1.2.2-Tetrachloroethane	-	-	-						
1.2-Dibromoethane	-	-	-						
1.2-Dichlorobenzene	-	-	-						
1.2-Dichloroethane	-	-	-						
1.2-Dichloropropane	-	-	-						
1.2.3-Trichloropropane	-	-	-						
1.2.4-Trimethylbenzene	-	-	-						
1.3-Dichlorobenzene	-	-	-						
1.3-Dichloropropane	-	-	-						
1.3.5-Trimethylbenzene	-	-	-						
1.4-Dichlorobenzene	-	-	-						
2-Butanone (MEK)	-	-	-						
2-Propanone (Acetone)	-	-	-						
4-Chlorotoluene	-	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available

NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	T1/1/0.2	T1/2/0.8	DS1	RPD_DS1	TS1
	HSLs - A/B	Management	ESLs	Depth (m)	0.2	0.8	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	6/09/2016	6/09/2016	6/09/2016	-	6/09/2016
4-Methyl-2-pentanone (MIBK)	-	-	-						
Allyl chloride	-	-	-						
Benzene	0.6	-	65		< 0.1	< 0.1	< 0.1	пс	< 0.1
Bromobenzene	-	-	-						
Bromochloromethane	-	-	-						
Bromodichloromethane	-	-	-						
Bromoform	-	-	-						
Bromomethane	-	-	-						
Carbon disulfide	-	-	-						
Carbon Tetrachloride	-	-	-						
Chlorobenzene	-	-	-						
Chloroethane	-	-	-						
Chloroform	-	-	-						
Chloromethane	-	-	-						
cis-1.2-Dichloroethene	-	-	-						
cis-1.3-Dichloropropene	-	-	-						
Dibromochloromethane	-	-	-						
Dibromomethane	-	-	-						
Dichlorodifluoromethane	-	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

--- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	T1/1/0.2	T1/2/0.8	DS1	RPD_DS1	TS1
	HSLs - A/B	Management	ESLs	Depth (m)	0.2	0.8	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	6/09/2016	6/09/2016	6/09/2016	-	6/09/2016
Ethylbenzene	NL	-	125		< 0.1	< 0.1	< 0.1	NC	< 0.1
lodomethane	-	-	-						
Isopropyl benzene (Cumene)	-	-	-						
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	nc	< 0.2
Methylene Chloride	-	-	-						
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	nc	< 0.1
Styrene	-	-	-						
Tetrachloroethene	-	-	-						
Toluene	390	-	105		< 0.1	< 0.1	< 0.1	nc	< 0.1
trans-1.2-Dichloroethene	-	-	-						
trans-1.3-Dichloropropene	-	-	-						
Trichloroethene	-	-	-						
Trichlorofluoromethane	-	-	-						
Vinyl chloride	-	-	-						
Xylenes - Total	95	-	45		< 0.3	< 0.3	< 0.3	nc	< 0.3

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	RPD_TS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.2	0.3	0.5	0.2
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
1.1-Dichloroethane	-	-	-						
1.1-Dichloroethene	-	-	-						
1.1.1-Trichloroethane	-	-	-						
1.1.1.2-Tetrachloroethane	-	-	-						
1.1.2-Trichloroethane	-	-	-						
1.1.2.2-Tetrachloroethane	-	-	-						
1.2-Dibromoethane	-	-	-						
1.2-Dichlorobenzene	-	-	-						
1.2-Dichloroethane	-	-	-						
1.2-Dichloropropane	-	-	-						
1.2.3-Trichloropropane	-	-	-						
1.2.4-Trimethylbenzene	-	-	-						
1.3-Dichlorobenzene	-	-	-						
1.3-Dichloropropane	-	-	-						
1.3.5-Trimethylbenzene	-	-	-						
1.4-Dichlorobenzene	-	-	-						
2-Butanone (MEK)	-	-	-						
2-Propanone (Acetone)	-	-	-						
4-Chlorotoluene	-	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available

NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

CX Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	RPD_TS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.2	0.3	0.5	0.2
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
4-Methyl-2-pentanone (MIBK)	-	-	-						
Allyl chloride	-	-	-						
Benzene	0.6	-	65		nc	< 0.1	< 0.1	< 0.1	< 0.1
Bromobenzene	-	-	-						
Bromochloromethane	-	-	-						
Bromodichloromethane	-	-	-						
Bromoform	-	-	-						
Bromomethane	-	-	-						
Carbon disulfide	-	-	-						
Carbon Tetrachloride	-	-	-						
Chlorobenzene	-	-	-						
Chloroethane	-	-	-						
Chloroform	-	-	-						
Chloromethane	-	-	-						
cis-1.2-Dichloroethene	-	-	-						
cis-1.3-Dichloropropene	-	-	-						
Dibromochloromethane	-	-	-						
Dibromomethane	-	-	-						
Dichlorodifluoromethane	-	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	RPD_TS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.2	0.3	0.5	0.2
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
Ethylbenzene	NL	-	125		ПС	< 0.1	< 0.1	< 0.1	< 0.1
lodomethane	-	-	-						
Isopropyl benzene (Cumene)	-	-	-						
m&p-Xylenes	-	-	-		пс	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	-	-	-						
o-Xylene	-	-	-		пс	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	-	-	-						
Tetrachloroethene	-	-	-						
Toluene	390	-	105		пс	< 0.1	< 0.1	< 0.1	< 0.1
trans-1.2-Dichloroethene	-	-	-						
trans-1.3-Dichloropropene	-	-	-						
Trichloroethene	-	-	-						
Trichlorofluoromethane	-	-	-						
Vinyl chloride	-	-	-						
Xylenes - Total	95	-	45		пс	< 0.3	< 0.3	< 0.3	< 0.3

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

CX Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS1	SS6	SS7	SS8	SS9
	HSLs - A/B	Management	ESLs	Depth (m)	-	-	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
1.1-Dichloroethane	-	-	-			< 0.5	< 0.5		
1.1-Dichloroethene	-	-	-			< 0.5	< 0.5		
1.1.1-Trichloroethane	-	-	-			< 0.5	< 0.5		
1.1.1.2-Tetrachloroethane	-	-	-			< 0.5	< 0.5		
1.1.2-Trichloroethane	-	-	-			< 0.5	< 0.5		
1.1.2.2-Tetrachloroethane	-	-	-			< 0.5	< 0.5		
1.2-Dibromoethane	-	-	-			< 0.5	< 0.5		
1.2-Dichlorobenzene	-	-	-			< 0.5	< 0.5		
1.2-Dichloroethane	-	-	-			< 0.5	< 0.5		
1.2-Dichloropropane	-	-	-			< 0.5	< 0.5		
1.2.3-Trichloropropane	-	-	-			< 0.5	< 0.5		
1.2.4-Trimethylbenzene	-	-	-			< 0.5	< 0.5		
1.3-Dichlorobenzene	-	-	-			< 0.5	< 0.5		
1.3-Dichloropropane	-	-	-			< 0.5	< 0.5		
1.3.5-Trimethylbenzene	-	-	-			< 0.5	< 0.5		
1.4-Dichlorobenzene	-	-	-			< 0.5	< 0.5		
2-Butanone (MEK)	-	-	-			< 0.5	< 0.5		
2-Propanone (Acetone)	-	-	-			< 5	< 5		
4-Chlorotoluene	-	-	-			< 0.5	< 0.5		

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

X Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS1	SS6	SS7	SS8	SS9
	HSLs - A/B	Management	ESLs	Depth (m)	-	-	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soil	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
4-Methyl-2-pentanone (MIBK)	-	-	-			< 0.5	< 0.5		
Allyl chloride	-	-	-			< 0.05	< 0.05		
Benzene	0.6	-	65		< 0.1	< 0.1	< 0.1	< 0.1	0.7
Bromobenzene	-	-	-			< 0.5	< 0.5		
Bromochloromethane	-	-	-			< 0.5	< 0.5		
Bromodichloromethane	-	-	-			< 0.5	< 0.5		
Bromoform	-	-	-			< 0.5	< 0.5		
Bromomethane	-	-	-			< 0.5	< 0.5		
Carbon disulfide	-	-	-			< 0.5	< 0.5		
Carbon Tetrachloride	-	-	-			< 0.5	< 0.5		
Chlorobenzene	-	-	-			< 0.5	< 0.5		
Chloroethane	-	-	-			< 0.5	< 0.5		
Chloroform	-	-	-			< 0.5	< 0.5		
Chloromethane	-	-	-			< 0.5	< 0.5		
cis-1.2-Dichloroethene	-	-	-			< 0.5	< 0.5		
cis-1.3-Dichloropropene	-	-	-			< 0.5	< 0.5		
Dibromochloromethane	-	-	-			< 0.5	< 0.5		
Dibromomethane	-	-	-			< 0.5	< 0.5		
Dichlorodifluoromethane	-	-	-			< 0.5	< 0.5		

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit -- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS1	SS6	SS7	SS8	SS9
	HSLs - A/B	Management	ESLs	Depth (m)	-	-	-	-	-
	Silt	Limits	Urban Res	Туре	-	-	-	-	-
	0 to <1 m	Res/Park	Fine Soll	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Ethylbenzene	NL	-	125		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Iodomethane	-	-	-			< 0.5	< 0.5		
Isopropyl benzene (Cumene)	-	-	-			< 0.5	< 0.5		
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Methylene Chloride	-	-	-			< 0.5	< 0.5		
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Styrene	-	-	-			< 0.5	< 0.5		
Tetrachloroethene	-	-	-			< 0.5	< 0.5		
Toluene	390	-	105		< 0.1	< 0.1	< 0.1	< 0.1	0.2
trans-1.2-Dichloroethene	-	-	-			< 0.5	< 0.5		
trans-1.3-Dichloropropene	-	-	-			< 0.5	< 0.5		
Trichloroethene	-	-	-			< 0.5	< 0.5		
Trichlorofluoromethane	-	-	-			< 0.5	< 0.5		
Vinyl chloride	-	-	-			< 0.5	< 0.5		
Xylenes - Total	95	-	45		< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS10	BH1/0.1-0.2	SP1/0.3-0.35	SP2/0.3-0.35	
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.1-0.2	0.3-0.35	0.3-0.35	
	Silt	Limits	Urban Res	Туре	-	-	-	-	
	0 to <1 m	Res/Park	Fine Soll	Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
1.1-Dichloroethane	-	-	-			< 0.5			
1.1-Dichloroethene	-	-	-			< 0.5			
1.1.1-Trichloroethane	-	-	-			< 0.5			
1.1.1.2-Tetrachloroethane	-	-	-			< 0.5			
1.1.2-Trichloroethane	-	-	-			< 0.5			
1.1.2.2-Tetrachloroethane	-	-	-			< 0.5			
1.2-Dibromoethane	-	-	-			< 0.5			
1.2-Dichlorobenzene	-	-	-			< 0.5			
1.2-Dichloroethane	-	-	-			< 0.5			
1.2-Dichloropropane	-	-	-			< 0.5			
1.2.3-Trichloropropane	-	-	-			< 0.5			
1.2.4-Trimethylbenzene	-	-	-			< 0.5			
1.3-Dichlorobenzene	-	-	-			< 0.5			
1.3-Dichloropropane	-	-	-			< 0.5			
1.3.5-Trimethylbenzene	-	-	-			< 0.5			
1.4-Dichlorobenzene	-	-	-			< 0.5			
2-Butanone (MEK)	-	-	-			< 0.5			
2-Propanone (Acetone)	-	-	-			< 5			
4-Chlorotoluene	-	-	-			< 0.5			

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS10	BH1/0.1-0.2	SP1/0.3-0.35	SP2/0.3-0.35	
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.1-0.2	0.3-0.35	0.3-0.35	
	Silt	Limits	Urban Res	Туре	-	-	-	-	
	0 to <1 m	Res/Park	Fine Soil	Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
4-Methyl-2-pentanone (MIBK)	-	-	-			< 0.5			
Allyl chloride	-	-	-			< 0.05			
Benzene	0.6	-	65		0.2	< 0.1	< 0.1	< 0.1	
Bromobenzene	-	-	-			< 0.5			
Bromochloromethane	-	-	-			< 0.5			
Bromodichloromethane	-	-	-			< 0.5			
Bromoform	-	-	-			< 0.5			
Bromomethane	-	-	-			< 0.5			
Carbon disulfide	-	-	-			< 0.5			
Carbon Tetrachloride	-	-	-			< 0.5			
Chlorobenzene	-	-	-			< 0.5			
Chloroethane	-	-	-			< 0.5			
Chloroform	-	-	-			< 0.5			
Chloromethane	-	-	-			< 0.5			
cis-1.2-Dichloroethene	-	-	-			< 0.5			
cis-1.3-Dichloropropene	-	-	-			< 0.5			
Dibromochloromethane	-	-	-			< 0.5			
Dibromomethane	-	-	-			< 0.5			
Dichlorodifluoromethane	-	-	-			< 0.5			

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS10	BH1/0.1-0.2	SP1/0.3-0.35	SP2/0.3-0.35	
	HSLs - A/B	Management	ESLs	Depth (m)	-	0.1-0.2	0.3-0.35	0.3-0.35	
	Silt	Limits	Urban Res	Туре	-	-	-	-	
	0 to <1 m	Res/Park	Fine Soil	Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
Ethylbenzene	NL	-	125		0.1	< 0.1	< 0.1	< 0.1	
lodomethane	-	-	-			< 0.5			
Isopropyl benzene (Cumene)	-	-	-			< 0.5			
m&p-Xylenes	-	-	-		< 0.2	< 0.2	< 0.2	< 0.2	
Methylene Chloride	-	-	-			< 0.5			
o-Xylene	-	-	-		< 0.1	< 0.1	< 0.1	< 0.1	
Styrene	-	-	-			< 0.5			
Tetrachloroethene	-	-	-			< 0.5			
Toluene	390	-	105		0.2	< 0.1	< 0.1	< 0.1	
trans-1.2-Dichloroethene	-	-	-			< 0.5			
trans-1.3-Dichloropropene	-	-	-			< 0.5			
Trichloroethene	-	-	-			< 0.5			
Trichlorofluoromethane	-	-	-			< 0.5			
Vinyl chloride	-	-	-			< 0.5			
Xylenes - Total	95	-	45		< 0.3	< 0.3	< 0.3	< 0.3	

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Residential and parkland Management Limits for TPH fractions in soil, fine material. Criteria 3 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	T1/1/0.2	T1/2/0.8	DS1	RPD_DS1	TS1
	HSLs - A/B	ESLs		Depth (m)	0.2	0.8	-	-	-
	Silt	Urban Res	HILs - A	Туре	-	-	-	-	-
	0 to <1 m	Fine Soil		Date	6/09/2016	6/09/2016	6/09/2016	-	6/09/2016
Acenaphthene	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Acenaphthylene	-	-	-		< 0.5	< 0.5	< 0.5	пс	< 0.5
Anthracene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Benz(a)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Benzo(a)pyrene	-	0.7	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Benzo(b&j)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Benzo(g.h.i)perylene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Benzo(k)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Chrysene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Dibenz(a.h)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Fluorene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Naphthalene	4	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Phenanthrene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Pyrene	-	-	-		< 0.5	< 0.5	< 0.5	nc	< 0.5
Benzo(a)pyrene TEQ	-	-	3		0.6	0.6	0.6	0%	0.6
Total PAH	-	-	300		< 0.5	< 0.5	< 0.5	пс	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	RPD_TS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
	HSLs - A/B	ESLs		Depth (m)	-	0.2	0.3	0.5	0.2
	Silt	Urban Res	HILs - A	Туре	-	-	-	-	-
	0 to <1 m	Fine Soil		Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
Acenaphthene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	-	0.7	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	4	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	-	-	-		пс	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ	-	-	3		0%	0.6	0.6	0.6	0.6
Total PAH	-	-	300		пс	< 0.5	< 0.5	< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS1	SS6	SS7	SS8	SS9
	HSLs - A/B	ESLs		Depth (m)	-	-	-	-	-
	Silt	Urban Res	HILs - A	Туре	-	-	-	-	-
	0 to <1 m	Fine Soil		Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Acenaphthene	-	-	-		< 0.5			< 0.5	< 0.5
Acenaphthylene	-	-	-		< 0.5			< 0.5	< 0.5
Anthracene	-	-	-		< 0.5			< 0.5	< 0.5
Benz(a)anthracene	-	-	-		< 0.5			< 0.5	< 0.5
Benzo(a)pyrene	-	0.7	-		< 0.5			< 0.5	< 0.5
Benzo(b&j)fluoranthene	-	-	-		< 0.5			< 0.5	< 0.5
Benzo(g.h.i)perylene	-	-	-		< 0.5			< 0.5	< 0.5
Benzo(k)fluoranthene	-	-	-		< 0.5			< 0.5	< 0.5
Chrysene	-	-	-		< 0.5			< 0.5	< 0.5
Dibenz(a.h)anthracene	-	-	-		< 0.5			< 0.5	< 0.5
Fluoranthene	-	-	-		< 0.5			< 0.5	< 0.5
Fluorene	-	-	-		< 0.5			< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5			< 0.5	< 0.5
Naphthalene	4	-	-		< 0.5			< 0.5	< 0.5
Phenanthrene	-	-	-		< 0.5			< 0.5	< 0.5
Pyrene	-	-	-		< 0.5			< 0.5	< 0.5
Benzo(a)pyrene TEQ	-	-	3		0.6			0.6	0.6
Total PAH	-	-	300		< 0.5			< 0.5	< 0.5

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

OCIX Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Sample ID	SS10	BH1/0.1-0.2	SP1/0.3-0.35	SP2/0.3-0.35	
	HSLs - A/B	ESLs		Depth (m)	-	0.1-0.2	0.3-0.35	0.3-0.35	
	Silt	Urban Res	HILs - A	Туре	-	-	-	-	
	0 to <1 m	Fine Soll		Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
Acenaphthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	-	0.7	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	4	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	-	-	-		< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ	-	-	3		0.6	0.6	0.6	0.6	
Total PAH	-	-	300		< 0.5	< 0.5	< 0.5	< 0.5	

Notes:

Criteria 1 = NEPC (1999) Amended, 'A/B' Residential Soil Health Screening Levels for vapour intrusion, silt 0 to <1m. Criteria 2 = NEPC (1999) Amended, Ecological Screening Levels for urban residential/public open space, fine soil. Criteria 3 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Total concentrations in mg/kg - = assessment criteria not available NL = not limiting DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	T1/1/0.2	T1/2/0.8	DS1	TS1	RPD_TS1
			EILS	1/2 EILS	Depth (m)	0.2	0.8	-	-	-
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	6/09/2016	6/09/2016	6/09/2016	6/09/2016	-
Arsenic	100	50	100	50		5.8	5	4.5	14	95%
Cadmium	20	10	-	-		< 0.4	< 0.4	< 0.4	< 0.4	NC
Chromium	100 ¹	50 ¹	190 ²	95²		22	23	16	16	36%
Copper	6,000	3,000	100	50		13	14	17	16	13%
Lead	300	150	1,100	550		19	33	29	22	40%
Mercury	40	20	-	-		< 0.05	< 0.05	< 0.05	< 0.1	nc
Nickel	400	200	160	80		6.4	7.1	7	7.7	8%
Zinc	7,400	3,700	260	130		48	62	62	56	10%

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	RPD_DS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
			EILS	1/2 EILS	Depth (m)	-	0.2	0.3	0.5	0.2
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
Arsenic	100	50	100	50		11%	5	6.4	3.5	3.7
Cadmium	20	10	-	-		пс	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	100 ¹	50 ¹	190 ²	95²		36%	17	25	9.3	9.4
Copper	6,000	3,000	100	50		19%	16	11	9	12
Lead	300	150	1,100	550		13%	30	30	11	16
Mercury	40	20	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	400	200	160	80		1%	5.8	5.1	< 5	< 5
Zinc	7,400	3,700	260	130		0%	27	18	7.2	11

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C1	C2	C3	C4	C5
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Arsenic	100	50	100	50		< 2	5.9	5.8	< 2	< 2
Cadmium	20	10	-	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	100 ¹	50 ¹	190 ²	95 ²		13	20	17	17	23
Copper	6,000	3,000	100	50		19	18	13	11	27
Lead	300	150	1,100	550		31	28	34	25	49
Mercury	40	20	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	400	200	160	80		9	13	10	5.7	9
Zinc	7,400	3,700	260	130		40	55	47	23	60

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

- < # or ND = analyte(s) not detected in excess of laboratory reporting limit
- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C6	C7	C8	C9	C10
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Arsenic	100	50	100	50		< 2	7.5	5.3	5.4	7.9
Cadmium	20	10	-	-		< 0.4	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	100 ¹	50 ¹	190 ²	95²		17	40	23	42	36
Copper	6,000	3,000	100	50		25	16	22	16	33
Lead	300	150	1,100	550		30	34	33	41	52
Mercury	40	20	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	400	200	160	80		6	8.9	5.9	5.6	7
Zinc	7,400	3,700	260	130		35	22	20	19	280

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C11	DS2	TS2 - COMP	RPD_DS2	RPD_TS2 - COMF
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	-	-	-
Arsenic	100	50	100	50		17	21	35	21%	69%
Cadmium	20	10	-	-		< 0.4	< 0.4	< 0.4	пс	пс
Chromium	100 ¹	50 ¹	190 ²	95²		49	56	89	13%	58%
Copper	6,000	3,000	100	50		41	29	36	34%	13%
Lead	300	150	1,100	550		63	59	74	7%	16%
Mercury	40	20	-	-		0.15	0.13	< 0.1	14%	пс
Nickel	400	200	160	80		7	7	11	0%	44%
Zinc	7,400	3,700	260	130		36	39	49	8%	31%

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C12	SS1	SS2	SS3	SS4
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Arsenic	100	50	100	50		13	75			
Cadmium	20	10	-	-		< 0.4	1.2			
Chromium	100 ¹	50 ¹	190 ²	95²		41	110			
Copper	6,000	3,000	100	50		58	180			
Lead	300	150	1,100	550		69	1,400	67	84	140
Mercury	40	20	-	-		0.09	< 0.05			
Nickel	400	200	160	80		14	68			
Zinc	7,400	3,700	260	130		89	1,100			

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SS5	SS6	SS7	SS8	SS9
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	½ HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Arsenic	100	50	100	50					22	74
Cadmium	20	10	-	-					2.4	1.2
Chromium	100 ¹	50¹	190²	95²					69	110
Copper	6,000	3,000	100	50					410	180
Lead	300	150	1,100	550		64			110	1,400
Mercury	40	20	-	-					0.07	< 0.05
Nickel	400	200	160	80					72	68
Zinc	7,400	3,700	260	130					2,700	1,200

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SS10	BH1/0.1-0.2	SS1/0.0-0.15	S21/0.0-0.15	
			EILS	1/2 EILS	Depth (m)	-	0.1-0.2	0.0-0.15	0.0-0.15	
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	
			Residential	Residential	Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
Arsenic	100	50	100	50		< 2	< 2			
Cadmium	20	10	-	-		< 0.4	< 0.4			
Chromium	100 ¹	50 ¹	190 ²	95²		35	26			
Copper	6,000	3,000	100	50		94	25			
Lead	300	150	1,100	550		160	13			
Mercury	40	20	-	-		< 0.05	< 0.05			
Nickel	400	200	160	80		31	33			
Zinc	7,400	3,700	260	130		220	20			

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available ¹Guideline for Cromium (VI) used conservatively. ²Guideline for Chromium (III) used conservatively. DS1 = duplicate of T1/2/0.8 TS1 = triplicate of T1/2/0.8 DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

OGIX Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SP1/0.3-0.35	SP2/0.3-0.35		
			EILS	1/2 EILS	Depth (m)	0.3-0.35	0.3-0.35		
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-		
			Residential	Residential	Date	5/10/2016	5/10/2016		
Arsenic	100	50	100	50		2.7	5.3		
Cadmium	20	10	-	-		< 0.4	< 0.4		
Chromium	100 ¹	50 ¹	190 ²	95²		20	20		
Copper	6,000	3,000	100	50		15	12		
Lead	300	150	1,100	550		20	20		
Mercury	40	20	-	-		< 0.05	< 0.05		
Nickel	400	200	160	80		18	< 5		
Zinc	7,400	3,700	260	130		18	16		

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

- = assessment criteria not available
¹Guideline for Cromium (VI) used conservatively.
²Guideline for Chromium (III) used conservatively.
DS1 = duplicate of T1/2/0.8
TS1 = triplicate of T1/2/0.8
DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	T1/1/0.2	T1/2/0.8	DS1	TS1	RPD_TS1
			EILS	½ EILS	Depth (m)	0.2	0.8	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	6/09/2016	6/09/2016	6/09/2016	6/09/2016	-
4.4'-DDD	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	NC
4.4'-DDE	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
4.4'-DDT	-	-	180	90		< 0.05	< 0.05	< 0.05	< 0.05	nc
a-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Aldrin	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
b-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Chlordanes - Total	50	25	-	-		< 0.1	< 0.1	< 0.1	< 0.1	nc
d-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Dieldrin	-	-	-	-		< 0.05	0.88	0.06	0.3	98%
Endosulfan I	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Endosulfan II	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Endosulfan sulphate	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Endrin	10	5	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Endrin aldehyde	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Endrin ketone	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
g-BHC (Lindane)	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Heptachlor	6	3	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Heptachlor epoxide	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	nc
Hexachlorobenzene	10	5	-	-		< 0.05	< 0.05	< 0.05	< 0.05	NC

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

X Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	T1/1/0.2	T1/2/0.8	DS1	TS1	RPD_TS1
			EILS	1/2 EILS	Depth (m)	0.2	0.8	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	6/09/2016	6/09/2016	6/09/2016	6/09/2016	-
Methoxychlor	300	150	-	-		< 0.2	< 0.2	< 0.2	< 0.05	nc
Toxaphene	20	10	-	-		< 1	< 1	< 1	< 1	nc
Aldrin + Dieldrin	6	3	-	-		ND	0.88	0.06	0.3	98%
Endosulfans - Total	270	135	-	-		ND	ND	ND	ND	пс
DDD + DDE + DDT	240	120	-	-		ND	ND	ND	ND	nc
Scheduled Chemical Wastes	-	-	-	-		ND	0.88	0.06	0.3	98%

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	RPD_DS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
			EILS	½ EILS	Depth (m)	-	0.2	0.3	0.5	0.2
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
4.4'-DDD	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-	-	180	90		пс	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	50	25	-	-		пс	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-	-	-		174%	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	10	5	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-	-	-		nc	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	6	3	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10	5	-	-		пс	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	RPD_DS1	T1/3/0.2	T2/1/0.3	T2/2/0.5	T2/3/0.2
			EILS	½ EILS	Depth (m)	-	0.2	0.3	0.5	0.2
	HILs - A	½ HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	-	6/09/2016	6/09/2016	6/09/2016	6/09/2016
Methoxychlor	300	150	-	-		NC	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	20	10	-	-		nc	< 1	< 1	< 1	< 1
Aldrin + Dieldrin	6	3	-	-		174%	ND	ND	ND	ND
Endosulfans - Total	270	135	-	-		nc	ND	ND	ND	ND
DDD + DDE + DDT	240	120	-	-		nc	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-	-	-		174%	ND	ND	ND	ND

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C1	C2	C3	C4	C5
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
4.4'-DDD	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	-	-	180	90		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	50	25	-	-		< 0.1	< 0.1	< 0.1	< 0.1	0.1
d-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	10	5	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	6	3	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10	5	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

X Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C1	C2	C3	C4	C5
			EILS	½ EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Methoxychlor	300	150	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	20	10	-	-		< 1	< 1	< 1	< 1	< 1
Aldrin + Dieldrin	6	3	-	-		ND	ND	ND	ND	ND
Endosulfans - Total	270	135	-	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	240	120	-	-		ND	ND	ND	ND	ND
Scheduled Chemical Wastes	-	-	-	-		ND	ND	ND	ND	0.1

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11
- RPD = relative percent difference of duplicate/triplicate
- nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C6	C7	C8	C9	C10
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
4.4'-DDD	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	0.13
4.4'-DDT	-	-	180	90		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlordanes - Total	50	25	-	-		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
d-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	10	5	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	6	3	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	-	-	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	10	5	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C6	C7	C8	C9	C10
			EILS	½ EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Methoxychlor	300	150	-	-		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	20	10	-	-		< 1	< 1	< 1	< 1	< 1
Aldrin + Dieldrin	6	3	-	-		ND	ND	ND	ND	ND
Endosulfans - Total	270	135	-	-		ND	ND	ND	ND	ND
DDD + DDE + DDT	240	120	-	-		ND	ND	ND	ND	0.13
Scheduled Chemical Wastes	-	-	-	-		ND	ND	ND	ND	0.13

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C11	DS2	TS2 - COMP	RPD_DS2	RPD_TS2 - COMF
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	-	-	-
4.4'-DDD	-	-	-	-		< 0.05	< 0.05	< 0.05	ПС	ПС
4.4'-DDE	-	-	-	-		< 0.05	< 0.05	0.08	nc	nc
4.4'-DDT	-	-	180	90		< 0.05	< 0.05	< 0.05	nc	NC
a-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	nc
Aldrin	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	nc
b-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	nc
Chlordanes - Total	50	25	-	-		< 0.1	< 0.1	< 0.1	nc	nc
d-BHC	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	nc
Dieldrin	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	nc
Endosulfan I	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	nc
Endosulfan II	-	-	-	-		< 0.05	< 0.05	< 0.05	ПС	NC
Endosulfan sulphate	-	-	-	-		< 0.05	< 0.05	< 0.05	ПС	NC
Endrin	10	5	-	-		< 0.05	< 0.05	< 0.05	ПС	NC
Endrin aldehyde	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	nc
Endrin ketone	-	-	-	-		< 0.05	< 0.05	< 0.05	ПС	NC
g-BHC (Lindane)	-	-	-	-		< 0.05	< 0.05	< 0.05	nc	NC
Heptachlor	6	3	-	-		< 0.05	< 0.05	< 0.05	ПС	NC
Heptachlor epoxide	-	-	-	-		< 0.05	< 0.05	< 0.05	пс	nc
Hexachlorobenzene	10	5	-	-		< 0.05	< 0.05	< 0.05	пс	пс

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

X Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C11	DS2	TS2 - COMP	RPD_DS2	RPD_TS2 - COMF
			EILS	½ EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	-	-	-
Methoxychlor	300	150	-	-		< 0.2	< 0.2	< 0.05	nc	пс
Toxaphene	20	10	-	-		< 1	< 1	< 1	nc	nc
Aldrin + Dieldrin	6	3	-	-		ND	ND	ND	ПС	nc
Endosulfans - Total	270	135	-	-		ND	ND	ND	пс	nc
DDD + DDE + DDT	240	120	-	-		ND	ND	0.08	nc	nc
Scheduled Chemical Wastes	-	-	-	-		ND	ND	0.08	пс	nc

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C12	SS1	SS2	SS3	SS4
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1/2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
4.4'-DDD	-	-	-	-		< 0.05				
4.4'-DDE	-	-	-	-		< 0.05				
4.4'-DDT	-	-	180	90		< 0.05				
a-BHC	-	-	-	-		< 0.05				
Aldrin	-	-	-	-		< 0.05				
b-BHC	-	-	-	-		< 0.05				
Chlordanes - Total	50	25	-	-		< 0.1				
d-BHC	-	-	-	-		< 0.05				
Dieldrin	-	-	-	-		< 0.05				
Endosulfan I	-	-	-	-		< 0.05				
Endosulfan II	-	-	-	-		< 0.05				
Endosulfan sulphate	-	-	-	-		< 0.05				
Endrin	10	5	-	-		< 0.05				
Endrin aldehyde	-	-	-	-		< 0.05				
Endrin ketone	-	-	-	-		< 0.05				
g-BHC (Lindane)	-	-	-	-		< 0.05				
Heptachlor	6	3	-	-		< 0.05				
Heptachlor epoxide	-	-	-	-		< 0.05				
Hexachlorobenzene	10	5	-	-		< 0.05				

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

X Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	C12	SS1	SS2	SS3	SS4
			EILS	½ EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Methoxychlor	300	150	-	-		< 0.2				
Toxaphene	20	10	-	-		< 1				
Aldrin + Dieldrin	6	3	-	-		ND				
Endosulfans - Total	270	135	-	-		ND				
DDD + DDE + DDT	240	120	-	-		ND				
Scheduled Chemical Wastes	-	-	-	-		ND				

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SS5	SS6	SS7	SS8	SS9
			EILS	1/2 EILS	Depth (m)	-	-	-	-	-
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
4.4'-DDD	-	-	-	-						
4.4'-DDE	-	-	-	-						
4.4'-DDT	-	-	180	90						
a-BHC	-	-	-	-						
Aldrin	-	-	-	-						
b-BHC	-	-	-	-						
Chlordanes - Total	50	25	-	-						
d-BHC	-	-	-	-						
Dieldrin	-	-	-	-						
Endosulfan I	-	-	-	-						
Endosulfan II	-	-	-	-						
Endosulfan sulphate	-	-	-	-						
Endrin	10	5	-	-						
Endrin aldehyde	-	-	-	-						
Endrin ketone	-	-	-	-						
g-BHC (Lindane)	-	-	-	-						
Heptachlor	6	3	-	-						
Heptachlor epoxide	-	-	-	-						
Hexachlorobenzene	10	5	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SS5	SS6	SS7	SS8	SS9
			EILS	½ EILS	Depth (m)	-	-	-	-	-
	HILs - A	½ HILs - A	Urban	Urban	Туре	-	-	-	-	-
			Residential	Residential	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Methoxychlor	300	150	-	-						
Toxaphene	20	10	-	-						
Aldrin + Dieldrin	6	3	-	-						
Endosulfans - Total	270	135	-	-						
DDD + DDE + DDT	240	120	-	-						
Scheduled Chemical Wastes	-	-	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SS10	BH1/0.1-0.2	SS1/0.0-0.15	S21/0.0-0.15	
			EILS	½ EILS	Depth (m)	-	0.1-0.2	0.0-0.15	0.0-0.15	
	HILs - A	½ HILs - A	Urban	Urban	Туре	-	-	-	-	
			Residential	Residential	Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
4.4'-DDD	-	-	-	-						
4.4'-DDE	-	-	-	-						
4.4'-DDT	-	-	180	90						
a-BHC	-	-	-	-						
Aldrin	-	-	-	-						
b-BHC	-	-	-	-						
Chlordanes - Total	50	25	-	-						
d-BHC	-	-	-	-						
Dieldrin	-	-	-	-						
Endosulfan I	_	-	-	-						
Endosulfan II	-	-	-	-						
Endosulfan sulphate	-	-	-	-						
Endrin	10	5	-	-						
Endrin aldehyde	_	-	-	-						
Endrin ketone	-	-	-	-						
g-BHC (Lindane)	-	-	-	-						
Heptachlor	6	3	-	-						
Heptachlor epoxide	-	-	-	-						
Hexachlorobenzene	10	5	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

QIX Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SS10	BH1/0.1-0.2	SS1/0.0-0.15	S21/0.0-0.15	
			EILS	½ EILS	Depth (m)	-	0.1-0.2	0.0-0.15	0.0-0.15	
	HILs - A	½ HILs - A	Urban	Urban	Туре	-	-	-	-	
			Residential	Residential	Date	5/10/2016	6/10/2016	5/10/2016	5/10/2016	
Methoxychlor	300	150	-	-						
Toxaphene	20	10	-	-						
Aldrin + Dieldrin	6	3	-	-						
Endosulfans - Total	270	135	-	-						
DDD + DDE + DDT	240	120	-	-						
Scheduled Chemical Wastes	-	-	-	-						

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

60 - 80 Edmondson Avenue.

Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SP1/0.3-0.35	SP2/0.3-0.35		
			EILS	1/2 EILS	Depth (m)	0.3-0.35	0.3-0.35		
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-		
			Residential	Residential	Date	5/10/2016	5/10/2016		
4.4'-DDD	-	-	-	-		< 0.05	< 0.05		
4.4'-DDE	-	-	-	-		< 0.05	< 0.05		
4.4'-DDT	-	-	180	90		< 0.05	< 0.05		
a-BHC	-	-	-	-		< 0.05	< 0.05		
Aldrin	-	-	-	-		< 0.05	< 0.05		
b-BHC	-	-	-	-		< 0.05	< 0.05		
Chlordanes - Total	50	25	-	-		< 0.1	< 0.1		
d-BHC	-	-	-	-		< 0.05	< 0.05		
Dieldrin	-	-	-	-		< 0.05	< 0.05		
Endosulfan I	-	-	-	-		< 0.05	< 0.05		
Endosulfan II	-	-	-	-		< 0.05	< 0.05		
Endosulfan sulphate	-	-	-	-		< 0.05	< 0.05		
Endrin	10	5	-	-		< 0.05	< 0.05		
Endrin aldehyde	-	-	-	-		< 0.05	< 0.05		
Endrin ketone	-	-	-	-		< 0.05	< 0.05		
g-BHC (Lindane)	-	-	-	-		< 0.05	< 0.05		
Heptachlor	6	3	-	-		< 0.05	< 0.05		
Heptachlor epoxide	-	-	-	-		< 0.05	< 0.05		
Hexachlorobenzene	10	5	-	-		< 0.05	< 0.05		

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

TS1 = triplicate of T1/2/0.8

DS2 = duplicate of C11

TS2 - COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

60 - 80 Edmondson Avenue,

OCIX Austral NSW

	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Sample ID	SP1/0.3-0.35	SP2/0.3-0.35		
			EILS	1/2 EILS	Depth (m)	0.3-0.35	0.3-0.35		
	HILs - A	1⁄2 HILs - A	Urban	Urban	Туре	-	-		
			Residential	Residential	Date	5/10/2016	5/10/2016		
Methoxychlor	300	150	-	-		< 0.2	< 0.2		
Toxaphene	20	10	-	-		< 1	< 1		
Aldrin + Dieldrin	6	3	-	-		ND	ND		
Endosulfans - Total	270	135	-	-		ND	ND		
DDD + DDE + DDT	240	120	-	-		ND	ND		
Scheduled Chemical Wastes	-	-	-	-		ND	ND		

Notes:

Criteria 1 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants. Criteria 2 = NEPC (1999) Amended, 'A' Residential Health-based Investigation Levels for soil contaminants (½ for composites). Criteria 3 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space, minimum ACLs. Criteria 4 = NEPC (1999) Amended, Ecological Investigation Levels for urban residential/public open space (½ for composites). Total concentrations in mg/kg - = assessment criteria not available

DS1 = duplicate of T1/2/0.8

- TS1 = triplicate of T1/2/0.8
- DS2 = duplicate of C11
- TS2 COMP = triplicate of C11

RPD = relative percent difference of duplicate/triplicate

nc = RPD not calculated, one or both samples below laboratory reporting limit

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

- -- = sample not analysed
- Bold/red indicates exceedance of assessment criteria

Table 6 : Summary of Soil Analytical Data - AsbestosPhase 2 Environmental Site AssessmentProject No.: 1601114

60 - 80 Edmondson Avenue, Austral NSW

	Criteria 1	Sample ID	SS1	SS2	SS3	SS4	SS5
		Depth (m)	0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15
	Asbestos	Туре	Soil	Soil	Soil	Soil	Soil
	in Soil	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Fines/Fibrous Asbestos (AF/FA)	Presence		ND	ND	ND	ND	ND
Bonded Asbestos (ACM)	Presence		ND	Amo, Chr, Cro	ND	ND	ND

Notes:

Criteria 1 = Presence/absence of asbestos contamination in soil. ND = no asbestos detected Amo = Amosite asbestos detected Chy = Chrysotile asbestos detected Cro = Crocidolite asbestos detected --- = sample not analysed

Bold/red indicates presence of asbestos therefore exceedance of assessment criteria

Table 6 : Summary of Soil Analytical Data - AsbestosPhase 2 Environmental Site AssessmentProject No.: 1601114

60 - 80 Edmondson Avenue, Austral NSW

	Criteria 1	Sample ID	SS6	SS7	SS8	SS9	SS10
		Depth (m)	0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15	0.0-0.15
	Asbestos	Туре	Soil	Soil	Soil	Soil	Soil
	in Soil	Date	5/10/2016	5/10/2016	5/10/2016	5/10/2016	5/10/2016
Fines/Fibrous Asbestos (AF/FA)	Presence		ND	ND	ND	ND	ND
Bonded Asbestos (ACM)	Presence		ND	ND	ND	ND	ND

Notes:

Criteria 1 = Presence/absence of asbestos contamination in soil. ND = no asbestos detected Amo = Amosite asbestos detected Chy = Chrysotile asbestos detected Cro = Crocidolite asbestos detected -- = sample not analysed

Bold/red indicates presence of asbestos therefore exceedance of assessment criteria

Table 6 : Summary of Soil Analytical Data - AsbestosPhase 2 Environmental Site AssessmentProject No.: 1601114

60 - 80 Edmondson Avenue, Austral NSW

	Criteria 1	Sample ID	SS1/0.0-0.15	SS21/0.0-0.15	AC1/0.0-0.15
		Depth (m)	0.0-0.15	0.0-0.15	0.0-0.15
	Asbestos	Туре	Fragment	Fragment	Fragment
	in Soil	Date	5/10/2016	5/10/2016	5/10/2016
Fines/Fibrous Asbestos (AF/FA)	Presence		ND	Amo, Chr	ND
Bonded Asbestos (ACM)	Presence		ND	ND	ND

Notes:

Criteria 1 = Presence/absence of asbestos contamination in soil. ND = no asbestos detected Amo = Amosite asbestos detected Chy = Chrysotile asbestos detected Cro = Crocidolite asbestos detected

-- = sample not analysed

Bold/red indicates presence of asbestos therefore exceedance of assessment criteria

Table 7 : Summary of QAQC Water Analytical Data - Petroleum Hydrocarbons Phase 2 Environmental Site Assessment Project No.: 1601114

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Sample ID	R1	R2	
		Depth (m)	-	-	
		Туре	-	-	
		Date	5/10/2016	5/10/2016	
TRH C 6-C10	-		< 20	< 20	
TRH C ₆ -C ₁₀ less BTEX (F1)	-		< 20	< 20	
TRH >C10-C16	-		< 50	< 50	
TRH >C10-C16 less Naphthalene (F2)	-		< 50	< 50	
TRH >C16-C34	-		< 100	< 100	
TRH >C34-C40	-		< 100	< 100	
Benzene	-		< 1	< 1	
Toluene	-		< 1	< 1	
Ethylbenzene	-		< 1	< 1	
m&p-Xylenes	-		< 2	< 2	
o-Xylene	-		< 1	< 1	
Xylenes - Total	-		< 3	< 3	
Naphthalene	-		< 1	< 1	

Notes:

Total concentrations in µg/L

- = assessment criteria not available

R1 = rinsate sample

R2 = rinsate sample

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Table 8 : Summary of QAQC Water Analytical Data - Polyaromatic Hydrocarbons Phase 2 Environmental Site Assessment Project No.: 1601114

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Sample ID	R1	R2	
		Depth (m)	-	-	
		Туре	-	-	
		Date	5/10/2016	5/10/2016	
Acenaphthene	-		< 1	< 1	
Acenaphthylene			< 1	< 1	
Anthracene			< 1	< 1	
Benz(a)anthracene			< 1	< 1	
Benzo(a)pyrene			< 1	< 1	
Benzo(b&j)fluoranthene			< 1	< 1	
Benzo(g.h.i)perylene			< 1	< 1	
Benzo(k)fluoranthene			< 1	< 1	
Chrysene			< 1	< 1	
Dibenz(a.h)anthracene			< 1	< 1	
Fluoranthene	-		< 1	< 1	
Fluorene	-		< 1	< 1	
Indeno(1.2.3-cd)pyrene	-		< 1	< 1	
Naphthalene			< 1	< 1	
Phenanthrene			< 1	< 1	
Pyrene			< 1	< 1	
Benzo(a)pyrene TEQ	-				
Total PAH	-		< 1	< 1	

Notes:

Total concentrations in µg/L

- = assessment criteria not available

R1 = rinsate sample

R2 = rinsate sample

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

Table 9 : Summary of QAQC Water Analytical Data - Heavy MetalsPhase 2 Environmental Site AssessmentProject No.: 1601114

60 - 80 Edmondson Avenue,

Austral NSW

	Criteria 1	Sample ID	R1	R2	
		Depth (m)	-	-	
		Туре	-	-	
		Date	5/10/2016	5/10/2016	
Arsenic	-		< 1	< 1	
Cadmium	-		< 0.2	< 0.2	
Chromium			< 1	< 1	
Copper			< 1	< 1	
Lead			< 1	< 1	
Mercury			< 0.1	< 0.1	
Nickel			< 1	< 1	
Zinc	-		< 5	< 5	

Notes:

Total concentrations in µg/L

- = assessment criteria not available

R1 = rinsate sample

R2 = rinsate sample

< # or ND = analyte(s) not detected in excess of laboratory reporting limit

-- = sample not analysed

ATTACHMENT A

Ref.: AUSTRAL:37484	Cert. No.:	1262
Ppty: 23502	Page No.:	1
Applicant:	Receipt No.:	3404223
GEO-LOGIX	Receipt Amt.:	133.00
2309/4 DAYDREAM ST	Date:	01-Sep-2016
WARRIEWOOD NSW 2102		-

Property Desc: 60-80 EDMONDSON AVENUE, AUSTRAL NSW 2179 DP 416093 Cnr Lot A

PRESCRIBED INFORMATION PROVIDED PURSUANT TO

SECTION 149(2) OF THE

ENVIRONMENTAL PLANNING AND ASSESSMENT ACT 1979

NOTE: The following information is provided pursuant to Section 149(2) of the Environmental Planning and Assessment Act (EP&A Act) 1979 as prescribed by Schedule 4 of the Environmental Planning and Assessment Regulation (EP&A Regulation) 2000 and is applicable to the subject land as of the date of this certificate.

The Environmental Planning and Assessment Amendment Act 1997 commenced operation on the 1 July 1998. As a consequence of this Act the information contained in this certificate needs to be read in conjunction with the provisions of the Environmental Planning and Assessment (Amendment) Regulation 1998, Environmental Planning and Assessment (Further Amendment) Regulation 1998 and Environmental Planning and Assessment (Savings and Transitional) Regulation, 1998.

Cert. No.: 1262 Page No.: 2

(1) Names of relevant planning instruments and DCPs

(1) The name of each environment planning instrument that applies to the carrying out of Development on the land is/are listed below: -

Local Environmental Plans (LEPs) Not Applicable

State Environmental Planning Policies (SEPPs)

SEPP No 19 – Bushland in Urban Areas

SEPP No 21 – Caravan Parks

SEPP No 30 – Intensive Agriculture

SEPP No 33 – Hazardous and Offensive Development

SEPP No 44 – Koala Habitat Protection

- SEPP No 50 Canal Estate Development
- SEPP No 55 Remediation of Land
- SEPP (Exempt and Complying Development Codes) 2008
- SEPP No 62 Sustainable Aquaculture
- SEPP No 64 Advertising and Signage

SEPP No 65 – Design Quality of Residential Flat Development

SEPP (Building Sustainability Index: BASIX) 2004

SEPP No. 70 – Affordable Housing (Revised Schemes)

SEPP (Infrastructure) 2007

SEPP (Mining, Petroleum Production and Extractive Industries) 2007

SEPP (Miscellaneous Consent Provisions) 2007

SEPP (Affordable Rental Housing) 2009

SEPP (Sydney Region Growth Centres) 2006

SEPP (State and Regional Development) 2011

SEPP (Housing for Seniors or People with a Disability) 2004

Deemed State Environmental Planning Policies (Deemed SEPPs) SREP No 20 – Hawkesbury – Nepean River (No. 2 – 1997)

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved).

Draft Local Environmental Plans (LEPs) Not Applicable

Draft State Environmental Planning Policies (SEPPs) Draft State Environmental Planning Policy (Competition) 2010

Customer Service Centre Ground Floor, 33 Moore Street, Liverpool NSW 2170, DX 5030 Liverpool All correspondance to Locked Bag 7064 Liverpool BC NSW 1871 Call Centre 1300 36 2170 Fax 9821 9333 Email lcc@liverpool.nsw.gov.au Web www.liverpool.nsw.gov.au NRS 13 36 77 ABN 84 181 182 471

Cert. No.: 1262 Page No.: 3

(3) The name of each development control plan that applies to the carrying out of development on the land.

Liverpool Growth Centre Precincts DCP

- (4) In this clause, proposed environmental planning instrument includes a planning proposal for an LEP or a draft environmental planning instrument.
- 2. ZONING AND LAND USE UNDER RELEVANT LOCAL ENVIRONMENTAL PLANS Not Applicable

2A. Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

To the extent that the land is within any zone (however described) under:

Part 3 of the State Environmental Planning Policy (Sydney Region Growth Centres) 2006 (the 2006 SEPP), or

A Precinct Plan (within the meaning of the 2006 SEPP), or

A proposed Precinct Plan that is or has been the subject of community consultation or on public exhibition under the Act, or

State Environmental Planning Policy State Significant Precincts 2005.

The land is zoned under:

SEPP (Sydney Region Growth Centres) 2006

- (a) Name of zone, and the EPI from which the land zoning information is derived. R2 Low Density Residential - SEPP (Sydney Region Growth Centres) 2006
- (b) The purposes for which development may be carried out within the zone without the need for development consent

Home-based child care; Home occupations

(c) The purposes for which development may not be carried out within the zone except with development consent

Attached dwellings; Bed and breakfast accommodation; Boarding houses; Business identification signs; Child care centres; Community facilities; Drainage; Dual occupancies; Dwelling houses; Educational establishments; Environmental protection works; Exhibition homes; Exhibition villages; Group homes; Health consulting rooms; Home businesses; Home industries; Multi dwelling housing; Neighbourhood shops; Places of public worship; Roads; Secondary dwellings; Semi-detached dwellings; Seniors housing; Shop top housing; Studio dwellings

(d) The purposes for which the instrument provides that development is prohibited within the zone

Cert. No.: 1262 Page No.: 4

Any development not specified in item (b) or (c)

(e) Dwelling House

The development standards applying to the land that fix minimum land dimensions for the erection of a dwelling house on the land are listed below:

No development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land.

(f) Critical Habitat

The provisions applying to the land that relate to critical habitat are outlined below:-

The land does not include or comprise critical habitat.

(g) Conservation Area

The provisions applying to the land that relate to a conservation areas are outlined below: -

No

(h) Environmental Heritage

The provisions applying to the land that relate to an item of environmental heritage is/are outlined below:

No

3. Complying development

(1) The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18(1) (C3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

Complying development under the General Development Code may be carried out on this land.

Complying development under the Rural Housing Code may be carried out on this land.

Complying development under the Fire Safety Code may be carried out on this land.

Complying development under the Housing Alterations Code may be carried out on this land.

Cert. No.: 1262

Page No.: 5

Complying Development under the Commercial and Industrial Alterations Code may be carried out on this land.

Complying Development under the Commercial and Industrial (**New** Buildings and Additions) Code may be carried out on this land.

Complying Development under the Subdivisions Code may be carried out on this land.

Complying Development under the Demolition Code may be carried out on this land.

Complying development under the General Housing Code may be carried out on the land.

(2) The extent to which complying development may not be carried out on that land because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (C3) and 1.19 of that Policy and the reasons why it may not be carried out under those clauses.

Not Applicable

(3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land.

Not Applicable

4. Coastal Protection Act 1979

There has been no notification from the Department of Public Works that the land is subject to the operation of Section 38 or 39 of the Coastal Protection Act, 1979.

4A Information relating to beaches and coasts

(1) In relation to a coastal council—whether an order has been made under Part 4D of the Coastal Protection Act 1979 in relation to temporary coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

Not Applicable

(2) In relation to a coastal council:

PLANNING CERTIFICATE UNDER SECTION 149Cert. No.: 1262ENVIRONMENTAL PLANNING AND ASSESSMENT ACT 1979Page No.: 6

- (a) whether the council has been notified under section 55X of the Coastal Protection Act 1979 that temporary coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and
- (b) if works have been so placed, whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

Not Applicable

4B Annual charges under Local Government Act 1993 for coastal protection services that relate to existing coastal protection works

In relation to a coastal council—whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Not Applicable

5. Mine Subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of Section 15 of the Mine Subsidence Compensation Act 1961.

The land is not a mine subsidence district.

6. Road Widening and Road Realignment

Whether or not the land is affected by any road widening or road realignment under:

- (a) Division 2 of Part 3 of the Roads Act 1993, or
- (b) Any environmental planning instrument, or
- (c) Any resolution of the council.

The land is not affected by any road widening or road realignment.

7. Council and Other Public Authority Policies on Hazard Risk Restrictions

Whether or not the land is affected by a policy:

- (a) adopted by the council, or
- (b) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council, that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulphate soils or any other risk (other than flooding).

Land Slip

The land is not affected by a policy adopted by the Council, or any other public authority and notified

Cert. No.: 1262 Page No.: 7

to the council for the express purpose of its adoption being referred to in a planning certificate that restricts the development of the land because of the likelihood of land slip.

Bushfire

The land is not affected by a policy adopted by the Council, or any other public authority and notified to the council for the express purpose of its adoption being referred to in a planning certificate which restricts the development of the land because of the likelihood of bushfire.

Tidal Inundation

The land is not affected by a policy adopted by the Council, or any other public authority and notified to the council for the express purpose of its adoption being referred to in a planning certificate that restricts the development of the land because of the likelihood of tidal inundation.

Subsidence

The land is not affected by a policy adopted by the Council, or any other public authority and notified to the council for the express purpose of its adoption being referred to in a planning certificate that restricts the development of the land because of the likelihood of subsidence.

Acid Sulphate Soil

The land is not affected by a policy adopted by the Council, or any other public authority and notified to the council for the express purpose of its adoption being referred to in a planning certificate that restricts the development of the land because of the likelihood of acid sulphate soil.

Other Risks

The land is not affected by a policy adopted by the Council, or any other public authority and notified to the council for the express purpose of its adoption being referred to in a planning certificate that restricts the development of the land because of the likelihood of any other risk.

7A. Flood Related Development Controls Information

Whether or not development on that land or part of the land for purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

(1) Whether or not development on that land or part of the land for purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

Part of the land is affected by flood inundation and therefore flood related development controls apply to the land.

(2) Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls.

Part of the land is affected by flood inundation and therefore flood related development controls apply to development or any other purpose.

Note: Words and expressions in this clause have the same meanings as in the instrument set out in the

Cert. No.: 1262 Page No.: 8

Schedule to the Standard Instrument (Local Environmental Plans) Order 2006.

8. Land Reserved for Acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

No

9. Contribution Plans

The name of each contribution plan applying to the land is/are outlined below: Liverpool Contributions Plan 2014 - **Austral and Leppington North Precincts**

9A Biodiversity certified land

If the land is biodiversity certified land (within the meaning of Part 7AA of the Threatened Species Conservation Act 1995), a statement to that effect.

The land is biodiversity certified land within the meaning of Part 7AA of the Threatened Species Conservation Act (1995).

10. Biobanking agreements

If the land is land to which a bio-banking agreement under Part 7A of the Threatened Species Conservation Act 1995 relates, a statement to that effect (but only if the council has been notified of the existence of the agreement by the Director-General of the Department of Environment, Climate Change and Water).

No

11. Bushfire Prone Land

None of the land is bush fire prone land as defined in the Environmental Planning and Assessment Act 1979.

12. Property Vegetation Plans

If the land is land to which a Property Vegetation Plan under the Native Vegetation Act 2003 applies, a statement to that effect (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under that Act).

The land is not land to which a property vegetation plan relates, as all land in the Liverpool Local Government Area is excluded from the operation of the *Native Vegetation Act 2003*.

13. Orders under Trees (Disputes between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes Between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

Council has not been notified of an order made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land.

14. Directions under Part 3A

Customer Service Centre Ground Floor, 33 Moore Street, Liverpool NSW 2170, DX 5030 Liverpool All correspondance to Locked Bag 7064 Liverpool BC NSW 1871 Call Centre 1300 36 2170 Fax 9821 9333 Email lcc@liverpool.nsw.gov.au Web www.liverpool.nsw.gov.au NRS 13 36 77 ABN 84 181 182 471

Cert. No.: 1262 Page No.: 9

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No such direction applies to the land.

15. Site Compatibility Certificates and Conditions for Seniors Housing

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies:

- (a) a statement of whether there is a current site compatibility certificate (seniors housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (i) The period for which the certificate is current, and
 - (ii) That a copy may be obtained from the head office of the Department of Planning

Council is not aware of a current site compatibility certificate (seniors housing) on the land

(b) a statement setting out any terms of a kind referred to in clause 18 (2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

There have been no such terms imposed as a condition of consent to development on the land.

16. Site Compatibility Certificates for Infrastructure

A statement of whether there is a valid site compatibility certificate (infrastructure), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:

- (a) The period for which the certificate is valid, and
- (b) That a copy may be obtained from the head office of the Department of Planning.

Council is not aware of a current site compatibility certificate (infrastructure) on the land.

17. Site compatibility certificates and conditions for affordable rental housing

- (1) A statement of whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (a) the period for which the certificate is current, and
 - (b) that a copy may be obtained from the head office of the Department of Planning.

Council is not aware of a current site compatibility certificate (affordable rental housing) on the land.

Cert. No.: 1262 Page No.: 10

(2) A statement setting out any terms of a kind referred to in clause 17 (1) or 38 (1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that have been imposed as a condition of consent to a development application in respect of the land.

There have been no such terms imposed as a condition of consent to development on the land.

18. Paper subdivision information

- The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.
 No such plan applies to the land.
- (2) The date of any subdivision order that applies to the land. No subdivision order applies to the land
- (3) Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

19. Site verification certificates

A statement of whether there is a current site verification certificate, of which the council is aware, in respect of the land and, if there is a certificate, the statement is to include:

(a) The matter certified by the certificate

Council is not aware of a current site verification certificate on the land.

Note. A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster land — see Division 3 of Part 4AA of State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

(b) The date on which the certificate ceases to be current (if any), and

Not Applicable

(c) That a copy may be obtained from the head office of the Department of Planning and Infrastructure.

Not Applicable

Note. The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate:

(a) That the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued

Not Applicable

Cert. No.: 1262 Page No.: 11

(b) That the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued

Not Applicable

(c) That the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued

Not Applicable

(d) That the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued

Not Applicable

(e) That the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Not Applicable

Note. Section 26 of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009 provides that a planning certificate must include advice about any exemption under section 23 or authorisation under section 24 of that Act if the council is provided with a copy of the exemption or authorisation by the Co-ordinator General under that Act.

No such exemption or authorisation applies to the land.

20. Loose-fill Asbestos Insulation

Some residential homes located in the Liverpool may have been identified as containing loose-fill asbestos insulation, for example in the roof space. NSW Fair Trading maintains a Register of homes that are affected by loose-fill asbestos insulation.

You should make your own enquiries as to the age of the buildings on the land to which this certificate relates and, if it contains a building constructed prior to 1980, the council strongly recommends that any potential purchaser obtain advice from a licensed asbestos assessor to determine whether loose-fill asbestos is present in any building on the land and, if so, the health risks (if any) this may pose for the building's occupants.

Contact NSW Fair Trading for further information.

Cert. No.: 1262 Page No.: 12

ADDITIONAL INFORMATION PROVIDED PURSUANT TO

SECTION 149(5) OF THE

ENVIRONMENTAL PLANNING & ASSESSMENT ACT 1979

1. Threatened Species Conservation Act

It is advisable for any application intending to purchase and/or develop land within the Liverpool Local Government Area to approach Council to ascertain if the requirements of the Threatened Species Act, 1995 are likely to apply to their land.

If the land has native vegetation of any sort (i.e. trees, shrubs, ground covers etc), has recently been cleared or is vacant land, it may have impediments to development under the Threatened Species Act, 1995.

Enquiries should be directed to Council's Infrastructure and Environment Department on 1300 362 170.

2. Tree Preservation Provision

The land is subject to a tree preservation provision.

3. Controlled Access Road No

4. Other Information in Relation to Water

The property is identified as flood prone and is within the medium risk flood category. Medium Flood Risk Category means land below the 1% Annual Exceedance Probability flood that is not subject to a high hydraulic hazard or where there is no significant evacuation (*See Section 1 Clause 3 of the 149 Certificate for the relevant Development Control Plan for controls relating to flood prone land*).

For further information on flood risk, contact Council on 1300 362 170.

5. Sydney Water Corporation

The land is within an area in which development cannot be carried out unless satisfactory arrangements have been made with the M.W.S & D.B. for the provision of Water Supply and Sewerage.

6. Foreshore Building Line

Nil

7. Contaminated Land

Nil

Customer Service Centre Ground Floor, 33 Moore Street, Liverpool NSW 2170, DX 5030 Liverpool All correspondance to Locked Bag 7064 Liverpool BC NSW 1871 Call Centre 1300 36 2170 Fax 9821 9333 Email lcc@liverpool.nsw.gov.au Web www.liverpool.nsw.gov.au NRS 13 36 77 ABN 84 181 182 471

Cert. No.: 1262 Page No.: 13

8. Airport Noise Affectation Nil

9. Airport Acquisition Nil

- 10. Environmentally Significant Land Nil
- 11. Archaeological Management Plan Nil
- 12. Unhealthy Building Land Proclamation Nil

For further information, please contact CALL CENTRE – 1300 36 2170 Luke West Administration Services Coordinator Liverpool City Council

Customer Service Centre Ground Floor, 33 Moore Street, Liverpool NSW 2170, DX 5030 Liverpool All correspondance to Locked Bag 7064 Liverpool BC NSW 1871 Call Centre 1300 36 2170 Fax 9821 9333 Email lcc@liverpool.nsw.gov.au Web www.liverpool.nsw.gov.au NRS 13 36 77 ABN 84 181 182 471 **ATTACHMENT B**

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT 80 Edmondson Avenue, Austral NSW

Plate 1 – View of the residential dwelling at 80 Edmondson Avenue.

Plate 2 – View south towards residential dwelling.

Plate 3 – Surface depressions in location of former dam

Plate 5 – Trenching across the former dam.

Plate 4 – Trenching across the former dam.

Plate 6 – Household waste used to fill the former dam.

Plate 7 – Asphalt used as fill in the former dam.

Plate 9 – Stockpiles of soil northern portion of the site.

Plate 11 – Stockpile of bricks in the northern portion of the site.

Plate 8 – Metal wire and fencing used as fill in the former dam.

Plate 10 – Composition of soil stockpiles in northern portion of the site.

Plate 12 – Composition of brick stockpile in northern portion of the site.

Plate 13 – Stockpile of bricks in the northern portion of the site.

Plate 15 – Material stored north of the residential dwelling.

Plate 17 – Paint cans and chemical containers stored on the asphalt to the north of the residential dwelling.

Plate 14 – Timber sheeting in the northern portion of the site. Note shipping container in background.

Plate 16 – Metal sheeting stored to the north of the residential dwelling.

Plate 18 – Sheets of fibre cement sheeting. Did not appear to be ACM.

Plate 19 – Drums containing glass fragments.

Plate 21 – Material storage to the north of the residential dwelling.

Plate 23 – Attached dwelling near large shed.

Plate 20 – Minor oil staining noted on ground surface near oil drums.

Plate 22 – Fire pit near attached dwelling near the shed.

Plate 24 – Rear view of the large shed.

Plate 25 – Internal view of the large shed showing mobile spray booth.

Plate 27 - Collection of lawn mowers stored within the shed.

Plate 29 – Area of burning at SS1 in the grassed area south of the dwelling at 80 Edmondson Avenue.

Plate 26 – Materials stored within the large shed.

Plate 28 – Car and boat stored between the shed and western property boundary.

Plate 30 – Fragments of burnt fibre cement sheeting in area of burning (SS1).

Plate 31 – Grassed area south of the dwelling at 80 Edmondson Avenue.

Plate 33 – Fragment of ACM identified in reworked topsoil at S21.

Plate 35 – Stockpiles of soil and grass clippings at 60 Edmondson Avenue.

Plate 32 – Former market gardening area between the dwellings at 60 and 80 Edmondson Avenue.

Plate 34 – Stockpile of timber and green waste in the former market gardening area.

Plate 36 – Timber and metal stored north of the dwelling at 60 Edmondson Avenue.

Plate 37 – Front of the dwelling located at 60 Edmondson Avenue.

Plate 39 – The garage at 60 Edmondson Avenue.

Plate 38 – Peeling paint around window frames at 60 Edmondson Avenue.

Plate 40 – Asbestos pipe used as planter box. Location of sample AC1.

ATTACHMENT C
bookmark this page

All Groundwater

All Groundwater Map

All data times are Eastern Standard Time

Map Info

ATTACHMENT D

Job No 11210049

Caller Details

Contact:	Mr Tim Gunns	Caller Id:	1486843	Phone:	0411724429
Company:	Geo-Logix	Mobile:	0411724429	Fax:	Not Supplied
Address:	Building Q2, Level 3 Unit 2309 Daydream Stre Warriewood NSW 2102	Email:	tgunns@geo-logix.co	om.au	

Dig Site and Enquiry Details

WARNING: The map below only displays the location of the proposed dig site and does not display any asset owners' pipe or cables. The area highlighted has been used only to identify the participating asset owners, who will send information to you directly.

asset owners, who will send info	prmation to you dire	ctly.
User Reference:	80 Edmondson	
Working on Behalf of:		
Private		
Enquiry Date:	Start Date:	End Date:
07/09/2016	30/09/2016	03/10/2016
Address:		
80 Edmondson Avenue		
Austral NSW 2179		
Job Purpose:	Excavation	
Onsite Activity:	Vertical Boring	
Location of Workplace:	Private Property	
Location in Road:	Not Supplied	
Check that the location	of the dig site is cor	rect. If not you must
 Should the scope of wor 	ks change, or plan v	alidity dates expire,
 Do NOT dig without plar If vou do not understand 	ns. Safe excavation i d the plans or how t	is your responsibility o proceed safely,

please contact the relevant asset owners.

Notes/Description of Works:

Test Pitting

Your Responsibilities and Duty of Care

- If plans are not received within 2 working days, contact the asset owners directly & quote their Sequence No.
- ALWAYS perform an onsite inspection for the presence of assets. Should you require an onsite location, contact the asset owners directly. Please remember, plans do not detail the exact location of assets.
- Pothole to establish the exact location of all underground assets using a hand shovel, before using heavy machinery.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.
- If you damage an underground asset you MUST advise the asset owner immediately.
- By using this service, you agree to Privacy Policy and the terms and disclaimers set out at www.1100.com.au
- For more information on safe excavation practices, visit www.1100.com.au

Asset Owner Details

The assets owners listed below have been requested to contact you with information about their asset locations within 2 working days. Additional time should be allowed for information issued by post. It is **your responsibility** to identify the presence of any underground assets in and around your proposed dig site. Please be aware, that not all asset owners are registered with the Dial Before You Dig service,

so it is **your responsibility** to identify and contact any asset owners not listed here directly. ** Asset owners highlighted by asterisks ** require that you visit their offices to collect plans.

Asset owners highlighted with a hash require that you call them to discuss your enquiry or to obtain plans.

Seq. No.	Authority Name	Phone	Status
55505261	Endeavour Energy	0298534161	NOTIFIED
55505263	Jemena Gas West	1300880906	NOTIFIED
55505264	Sydney Water	132092	NOTIFIED
55505262	Telstra NSW, Central	1800653935	NOTIFIED

END OF UTILITIES LIST

uence No.:	55505261
e:	07/09/2016

1 2 162	O162 O162 O162 O162 O162 O162 O162 O162				
Telstra	For all Telstra DBYD plan enquiries -	Sequence Number: 55505262			
	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present			
TELSTRA C	ORPORATION LIMITED A.C.N. 051 775 556	In plot area. Please read the Duty of Care and			
Gene	erated On 07/09/2016 16:52:02	any assistance.			

The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

Telstra	For all Telstra DBYD plan enquiries -	Sequence Number: 55505262	
leistru	For urgent onsite contact only - ph 1800 653 935 (bus hrs)	CAUTION: Fibre optic and/ or major network present	
TELSTRA C	ORPORATION LIMITED A.C.N. 051 775 556	ant plot area. Flease read the Duty of Care and	
Gene	erated On 07/09/2016 16:52:06	any assistance.	

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

ATTACHMENT E

Sample ID	Sample Location	Depth	Soil Type	Description	Analysis
S1/0.0-0.15	S1	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composito as C1, OCPs, Motals (8)
S2/0.0-0.15	S2	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composite as C1, OCFS, Metals (o)
S3/0.0-0.15	S3	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composito as C2, OCPs, Motals (8)
S4/0.0-0.15	S4	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composite as CZ, OCFS, Metals (o)
S5/0.0-0.15	S5	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composito os C2, OCDs, Motals (9)
S6/0.0-0.15	S6	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composite as CS, OCFS, Metals (o)
S7/0.0-0.15	S7	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composito os C4. OCPo, motolo (9)
S8/0.0-0.15	S8	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composite as C4, OCPS, metals (6)
S9/0.0-0.15	S9	0.0-0.15	Topsoil	Clay 5%, Silt 65%, Sand 20%, Gravel 10%, moderate brown (5YR4/4), dry	Composito os CE. OCDo. motolo (9)
S10/0.0-0.15	S10	0.0-0.15	Fill	Clay 15%, Silt 40%, Sand 30%, Gravel 15%, moderate brown (5YR4/4), damp	Composite as Co, OCPS, metals (6)
S11/0.0-0.15	S11	0.0-0.15	Fill	Clay 5%, Silt 60%, Sand 25%, Gravel 10%, moderate brown (5YR3/4), dry	Composito os CC. OCDo motolo (9)
S12/0.0-0.15	S12	0.0-0.15	Topsoil	Clay 5%, Silt 60%, Sand 30%, Gravel 5%, moderate brown (5YR3/4), dry	Composite as Co, OCPS, metals (o)
S13/0.0-0.15	S13	0.0-0.15	Fill	Clay 5%, Silt 60%, Sand 25%, Gravel 10%, moderate brown (5YR3/4), dry	Composite as C7, OCDs, motols (9)
S14/0.0-0.15	S14	0.0-0.15	Topsoil	Clay 5%, Silt 60%, Sand 25%, Gravel 10%, moderate brown (5YR3/4), dry	Composite as C1, OCPS, metals (6)
S15/0.0-0.15	S15	0.0-0.15	Topsoil	Clay 5%, Silt 60%, Sand 30%, Gravel 5%, moderate brown (5YR3/4), dry	Composito os CO. OCDo. motolo (0)
S16/0.0-0.15	S16	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 15%, Gravel 5%, moderate brown (5YR3/4), damp	Composite as Co, OCPS, metals (o)
S17/0.0-0.15	S17	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 15%, Gravel 5%, moderate brown (5YR3/4), damp	Composito os CO. OCDo. motolo (9)
S18/0.0-0.15	S18	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 15%, Gravel 5%, moderate brown (5YR3/4), damp	Composite as C9, OCFS, metals (o)
S19/0.0-0.15	S19	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 10%, Gravel 10%, dark reddish brown (10R3/4), damp	Composite as C10, OCPs, metals (8)

Sample ID	Sample Location	Depth	Soil Type	Description	Analysis
S20/0.0-0.15	S20	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 10%, Gravel 10%, dark reddish brown (10R3/4), damp	
S21/0.0-0.15	S21	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 10%, Gravel 10%, dark reddish brown (10R3/4), dry	
S22/0.0-0.15	S22	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 10%, Gravel 10%, dark reddish brown (10R3/4), damp	Composite as C11, OCPs, metals (8)
S23/0.0-0.15	S23	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 10%, Gravel 10%, dark reddish brown (10R3/4), damp	$C_{\text{opposite}} \approx C12 OCPc \text{motols} (2)$
S24/0.0-0.15	S24	0.0-0.15	Topsoil	Clay 5%, Silt 75%, Sand 10%, Gravel 10%, dark reddish brown (10R3/4), damp	Composite as CT2, OCFS, metais (6)
SS1/0.0-0.15	SS1	0.0-0.15	Fill	Silt 50%, Sand 25%, Gravel 25%, pale yellowish brown (10YR6/2), dry	TRH/BTEX/PAH/ Metals (8), Asbestos ID
SS2/0.0-0.15	SS2	0.0-0.15	Topsoil	Clay 5%, Silt 80%, Sand 5%, Gravel 10%, dark reddish brown (10R3/4), damp	Asbestos ID, Lead
SS3/0.0-0.15	SS3	0.0-0.15	Fill	Clay 5%, Silt 70%, Sand 15%, Gravel 10%, dark reddish brown (10R3/4), damp	Asbestos ID, Lead
SS4/0.0-0.15	SS4	0.0-0.15	Fill	Clay 5%, Silt 80%, Sand 5%, Gravel 10%, dark reddish brown (10R3/4), damp	Asbestos ID, Lead
SS5/0.0-0.15	SS5	0.0-0.15	Fill	Clay 5%, Silt 60%, Sand 30%, Gravel 5%, dark reddish brown (10R3/4), damp	Asbestos ID, Lead
SS6/0.0-0.15	SS6	0.0-0.15	Fill	Clay 15%, Silt 60%, Sand 20%, Gravel 5%, moderate brown (5YR4/4), moist	Asbestos ID, VOCs
SS7/0.0-0.15	SS7	0.0-0.15	Fill	Clay 15%, Silt 60%, Sand 20%, Gravel 5%, moderate brown (5YR4/4), damp	Asbestos ID, VOCs
SS8/0.0-0.15	SS8	0.0-0.15	Fill	Silt 60%, Sand 20%, Gravel 20%, pale yellowish brown (10YR6/2), dry	TRH/BTEX/PAH/ Metals (8), Asbestos ID
SS9/0.0-0.15	SS9	0.0-0.15	Fill	Silt 60%, Sand 20%, Gravel 20%, pale yellowish brown (10YR6/2), dry	TRH/BTEX/PAH/ Metals (8), Asbestos ID
SS10/0.0-0.15	SS10	0.0-0.15	Fill	Silt 60%, Sand 20%, Gravel 20%, pale yellowish brown (10YR6/2), dry	TRH/BTEX/PAH/ Metals (8), Asbestos ID

Sample ID	Sample Location	Depth	Soil Type	Description	Analysis
AC1/0.0-0.15	AC1	0.0-0.15	Fill	Clay 5%, Silt 40%, Sand 40%, Gravel 15%, greyish brown (5YR3/2), dry	Asbestos ID
SP1	SP1	-	Fill	Clay 10%, Silt 40%, Sand 30%, Gravel 20%, greyish brown (5YR3/2), dry	TRH/BTEX/PAH/ Metals (8), Asbestos ID
SP2	SP2	-	Fill	Clay 10%, Silt 40%, Sand 30%, Gravel 20%, greyish brown (5YR3/2), dry	TRH/BTEX/PAH/ Metals (8), Asbestos ID

ATTACHMENT F

Certificate of Analysis

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Tim Gunns

Report Project name Project ID Received Date **515269-S** 80 EDMONDSON AVE 1601067 Sep 09, 2016

			T1/1/0.2	T1/2/0.8	T1/3/0.2	T2/1/0.3
Sample Matrix			Soll	Soll	Sol	Soil
Eurofins mgt Sample No.			S16-Se10140	S16-Se10141	S16-Se10142	S16-Se10143
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	21	24
TRH C15-C28	50	mg/kg	57	56	94	140
TRH C29-C36	50	mg/kg	67	57	110	150
TRH C10-36 (Total)	50	mg/kg	124	113	225	314
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	85	82	87	79
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	56
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			T1/1/0.2	T1/2/0.8	T1/3/0.2	T2/1/0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se10140	S16-Se10141	S16-Se10142	S16-Se10143
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	100	100	94	99
p-Terphenyl-d14 (surr.)	1	%	106	107	100	103
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	0.88	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	111	133	130	142
Tetrachloro-m-xylene (surr.)	1	%	122	131	107	116
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	56
TRH >C16-C34	100	mg/kg	< 100	< 100	160	230
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	5.8	5.0	5.0	6.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	22	23	17	25
Copper	5	mg/kg	13	14	16	11
Lead	5	mg/kg	19	33	30	30
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	6.4	7.1	5.8	5.1
Zinc	5	mg/kg	48	62	27	18
% Moisture	1	%	21	28	25	24

Client Sample ID			T2/2/0.5	T2/3/0.2	DS1
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se10144	S16-Se10145	S16-Se10146
Date Sampled			Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	0			
TRH C6-C9	20	ma/ka	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	26
TRH C15-C28	50	mg/kg	< 50	81	100
TRH C29-C36	50	mg/kg	< 50	78	100
TRH C10-36 (Total)	50	mg/kg	< 50	159	226
втех					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	94	84	75
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions	1			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Dibenz(a,b)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	99	99	101
p-Terphenyl-d14 (surr.)	1	%	109	109	104
Organochlorine Pesticides					
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05

Client Sample ID			T2/2/0.5	T2/3/0.2	DS1
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Se10144	S16-Se10145	S16-Se10146
Date Sampled			Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit			
Organochlorine Pesticides					
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	0.06
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	115	111	137
Tetrachloro-m-xylene (surr.)	1	%	109	110	122
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	130	160
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
Heavy Metals					
Arsenic	2	mg/kg	3.5	3.7	4.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.3	9.4	16
Copper	5	mg/kg	9.0	12	17
Lead	5	mg/kg	11	16	29
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	< 5	< 5	7.0
Zinc	5	mg/kg	7.2	11	62
% Moisture	1	%	14	20	28

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Sep 13, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Sep 12, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 12, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Sep 13, 2016	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Sep 13, 2016	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Sep 12, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Sydney	Sep 12, 2016	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WA	ATERS BY ICP-MS		
% Moisture	Sydney	Sep 12, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ad	mpany Name: dress:	Geo-Logix P, Bld Q2 Level Warriewood NSW 2102	/L 3, 2309/4 Da	ydream St		Order No.: Report #: Phone: Fax:		der No port #: one: x:	PO1497 515269 02 9979 1722 02 9979 1222	Received: Due: Priority: Contact Name:	Sep 9, 2016 1:00 PM Sep 16, 2016 5 Day Tim Gunns
Pro Pro	oject Name: oject ID:	80 EDMOND 1601067	SON AVE						Eurof	ins mgt Analytical Se	ervices Manager : Nibha Vaidya
		Sa	mple Detail			Asbestos Absence /Presence	Moisture Set	Eurofins mgt Suite B9			
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71							
Sydn	ey Laboratory	- NATA Site # 1	8217			Х	Х	X			
Brist	bane Laboratory	y - NATA Site #	20794								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	T1/1/0.2	Not Provided		Soil	S16-Se10140	Х	Х	Х			
2	T1/2/0.8	Not Provided		Soil	S16-Se10141	Х	Х	Х			
3	T1/3/0.2	Not Provided		Soil	S16-Se10142	х	х	х			
4	T2/1/0.3	Not Provided		Soil	S16-Se10143	х	Х	х			
5	T2/2/0.5	Not Provided		Soil	S16-Se10144	Х	Х	х			
6	T2/3/0.2	Not Provided		Soil	S16-Se10145	Х	Х	Х			
7	DS1	Not Provided		Soil	S16-Se10146		Х	Х			
Test	Counts					6	7	7			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Here the second sec

Terms Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis. LOR Limit of Reporting. SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis. LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery Method Blank In the case of solid samples these are performed on laboratory certified clean sands In the case of water samples these are performed on de-ionised water. Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery. Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison. Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis. USEPA United States Environmental Protection Agency APHA American Public Health Association TCLP Toxicity Characteristic Leaching Procedure COC Chain of Custody SRA Sample Receipt Advice CP Client Parent - QC was performed on samples pertaining to this report Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within NCP TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			r			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
ВТЕХ						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					_	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank			[]			
Polycyclic Aromatic Hydrocarbons					_	
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
	mg/кg	< 0.5		0.5	Pass	
Fluoranthene	mg/кg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-ca)pyrene	mg/kg	< 0.5		0.5	Pass	
Reporterence	mg/kg	< 0.5		0.5	Pass	
Prienantriene	mg/kg	< 0.5		0.5	Pass	
Pytene Method Plank	mg/kg	< 0.5		0.5	Pass	
Organachlaring Basticidas						
Chlordanos, Total	ma/ka	< 0.1		0.1	Page	
	mg/kg	< 0.05		0.05	Dass	
4.4 DDE	ma/ka	< 0.05		0.05	Pass	
4.4'-DDT	ma/ka	< 0.05		0.05	Pass	
a-BHC	ma/ka	< 0.05		0.05	Pass	
Aldrin	ma/ka	< 0.05		0.05	Pass	
h-BHC	ma/ka	< 0.05		0.05	Pass	
d-BHC	ma/ka	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	ma/ka	< 0.05		0.05	Pase	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	ma/ka	< 0.05		0.05	Pass	
Endrin aldehyde	mg/ka	< 0.05		0.05	Pass	

eurofins mgt

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	ma/ka	< 5		5	Pass	
Mercury	ma/ka	< 0.05		0.05	Pass	
Nickel	ma/ka	< 5		5	Pass	
Zinc	ma/ka	< 5		5	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	73		70-130	Pass	
TRH C10-C14	%	75		70-130	Pass	
LCS - % Recovery						
BTEX						
Benzene	%	81		70-130	Pass	
Toluene	%	82		70-130	Pass	
Ethylbenzene	%	84		70-130	Pass	
m&p-Xylenes	%	89		70-130	Pass	
o-Xylene	%	88		70-130	Pass	
Xvlenes - Total	%	89		70-130	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	%	107		70-130	Pass	
TRH C6-C10	%	72		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	112		70-130	Pass	
Acenaphthylene	%	114		70-130	Pass	
Anthracene	%	128		70-130	Pass	
Benz(a)anthracene	%	113		70-130	Pass	
Benzo(a)pyrene	%	93		70-130	Pass	
Benzo(b&i)fluoranthene	%	77		70-130	Pass	
Benzo(g.h.i)perylene	%	88		70-130	Pass	
Benzo(k)fluoranthene	%	122		70-130	Pass	
Chrvsene	%	123		70-130	Pass	
Dibenz(a.h)anthracene	%	78		70-130	Pass	
Fluoranthene	%	124		70-130	Pass	
Fluorene	%	110		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	81		70-130	Pass	
Naphthalene	%	125		70-130	Pass	
	,0	0	II		. 400	

Penamintene%12870-130PassUCS - % Recovery12070-130PassOrganoch/orite Pesticides%11070-130PassChordanes - Total%11570-130Pass4.4-DDC%11570-130Pass4.4-DDT%11570-130Pass	Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Pyrene%10070-130PassConsidences11670-130Pass44-DDC%11570-130Pass44-DDE%11570-130Pass44-DDT%111570-130PassadHC%111470-130PassadHC%10770-130PassadHC%10770-130PassadHC%10770-130PassbBRC%10770-130PassbBRC%10770-130PassbBRC%10770-130PassbBRC%10770-130PassbBRC%11070-130PassbBRC%11070-130PassEndosulfan Julpate%11070-130PassEndosulfan sulpate%11070-130PassEndosulfan sulpate%11070-130PassEndosulfan sulpate%11270-130PassEndosulfan sulpate%11270-130PassEndosulfan sulpate%11270-130PassEndosulfan sulpate%11270-130PassEndosul	Phenanthrene			%	128		70-130	Pass	
USE *** RecoveryChiodranes - Total%10970-130Pass4.4-DDC%11570-130Pass4.4-DDC%11570-130Pass4.4-DDC%11570-130Pass4.4-DDC%10770-130Pass	Pyrene			%	120		70-130	Pass	
Organochlorine PesticidesImage: section of the section	LCS - % Recovery				1				
Chiodanes - Total % 109 70-30 Pass 44-'DDE % 115 70-30 Pass 44-'DDT % 115 70-30 Pass 44-'DDT % 111 70-130 Pass aHC % 107 70-130 Pass aHC % 107 70-130 Pass bBrC % 107 70-130 Pass chadaufan I % 107 70-130 Pass Endosulfan I % 110 70-130 Pass Endosulfan I % 110 70-130 Pass Endosulfan I % 110 70-130 Pass Endin subpate % 105 70-130 Pass Endin ketone % 105 70-130 Pass Endin ketone % 102 70-130 Pass Endin ketone % 102 70-130 Pass Endin ketone %	Organochlorine Pesticides								
4.4-DDD % 115 70-130 Pass 4.4-DDT % 116 70-130 Pass a BHC % 114 70-130 Pass a BHC % 107 70-130 Pass a BHC % 107 70-130 Pass b BHC % 107 70-130 Pass b BHC % 103 70-130 Pass b BHC % 100 70-130 Pass b BHC % 110 70-130 Pass Endosulfan I % 110 70-130 Pass Endosulfan sulphate % 110 70-130 Pass Endosulfan sulphate % 116 70-130 Pass Endosulfan sulphate % 102 70-130 Pass Endosulfan Sulphate % 102 70-130 Pass Endosulfan Sulphate % 102 70-130 Pass Endosulfan Sulphate </td <td>Chlordanes - Total</td> <td></td> <td></td> <td>%</td> <td>109</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Chlordanes - Total			%	109		70-130	Pass	
44-DDE % 115 70-130 Pass a-BHC 70-130 Pass a-BHC % 107 70-130 Pass Addin % 107 70-130 Pass b-BHC % 103 70-130 Pass d-BHC % 107 70-130 Pass d-BHC % 103 70-130 Pass Endosulfan I To-130 Pass Endosulfan subphate % 110 70-130 Pass Endosulfan subphate % 118 70-130 Pass Endin alcehyde % 116 70-130 Pass Endin ketone % 105 70-130 Pass endin ketone % 102 70-130 Pass Heptachlor % 103 70-130 Pass Heptachlor poxide % 103 70-130 Pass Les-Karoobenzene % 113	4.4'-DDD			%	115		70-130	Pass	
4.4-DDT % 114 7.0-130 Pass Aldrin	4.4'-DDE			%	115		70-130	Pass	
a.BHC % 107 70-130 Pass b.BHC - % 103 70-130 Pass d-BHC % 107 70-130 Pass d-BHC % 107 70-130 Pass d-BHC % 110 70-130 Pass Endosulfan II - % 110 70-130 Pass Endosulfan II - % 110 70-130 Pass Endosulfan II - % 116 70-130 Pass Endrin deloyde - % 115 70-130 Pass Endrin ketone - % 102 70-130 Pass eglaRC (Lindare) - % 106 70-130 Pass Heptachlor epoxide - % 106 70-130 Pass Les Ark acovery - % 112 70-130 Pass Total Acoveratoreb Hydrocarbors - 2013 N	4.4'-DDT			%	114		70-130	Pass	
Aldrin 5% 107 7 70-130 Pass b-BHC - % 100 70-130 Pass d-BHC - % 110 70-130 Pass Deledini - % 110 70-130 Pass Endosulfan II - % 110 70-130 Pass Endosulfan Rulphate - % 110 70-130 Pass Endrin allohyde - % 115 70-130 Pass Endrin allohyde - % 105 70-130 Pass Endrin allohyde - % 102 70-130 Pass Endrin allohyde - % 108 70-130 Pass Heptachlor poxide - % 102 70-130 Pass Heptachlor poxide - % 106 70-130 Pass Toxaphene - % 112 70-130 Pass CAS * Recovery </td <td>a-BHC</td> <td></td> <td></td> <td>%</td> <td>107</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	a-BHC			%	107		70-130	Pass	
b-BHC % 103 70.130 Pass Dieldrin % 110 70.130 Pass Endosulfan I % 110 70.130 Pass Endosulfan II % 110 70.130 Pass Endosulfan sulphate % 110 70.130 Pass Endosulfan sulphate % 118 70.130 Pass Endrin aldehyde % 115 70.130 Pass Endrin ketone % 115 70.130 Pass SelHC (Lindare) % 102 70.130 Pass Heptachlor poxide % 102 70.130 Pass Heptachlor poxide % 102 70.130 Pass Heptachlor poxide % 112 70.130 Pass Toxaphene % 113 70.130 Pass LGS *& Recovery % 114 70.130 Pass Cadmium % 114 70.130 Pass <td>Aldrin</td> <td></td> <td></td> <td>%</td> <td>107</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Aldrin			%	107		70-130	Pass	
d-BHC % 107 70.130 Pass Dieldrin 70.130 Pass Endosulfan I 70.130 Pass Endosulfan I 70.130 Pass Endosulfan I 70.130 Pass Endosulfan sulphate % 110 70.130 Pass Endrin % 118 70.130 Pass Endrin aldehyde % 105 70.130 Pass Endrin aldehyde % 115 70.130 Pass Endrin aldehyde % 108 70.130 Pass Endrin aldehyde % 108 70.130 Pass Heptachloropoxide % 108 70.130 Pass Heptachloropoxide % 108 70.130 Pass Toxaphene % 113 70.130 Pass LCS * & Recovery % 113 70.130 Pass Cadmium % 114 70.130<	b-BHC			%	103		70-130	Pass	
Dieldrim % 110 70.130 Pass Endosulfan II 70.130 Pass Endosulfan II % 110 70.130 Pass Endosulfan sulphate % 118 70.130 Pass Endrin faidehyde % 118 70.130 Pass Endrin aldehyde % 121 70.130 Pass Endrin aldehyde % 115 70.130 Pass Endrin aldehyde % 108 70.130 Pass Endrin ketone % 108 70.130 Pass Userschinorbenzene % 102 70.130 Pass Heptachlor epoxide % 106 70.130 Pass Toxaphene % 112 70.130 Pass LCS * Recovery % 113 70.130 Pass LCS * Recovery % 114 70.130 Pass Cadmium % 118 70.130 <	d-BHC			%	107		70-130	Pass	
Endosultan I Yo 110 70-130 Pass Endosultan II % 110 70-130 Pass Endosultan sulphate % 118 70-130 Pass Endrin didhyde % 115 70-130 Pass Endrin ketone % 115 70-130 Pass Endrin ketone % 115 70-130 Pass Endrin ketone % 102 70-130 Pass Heptachlor poxide % 102 70-130 Pass Heptachlor poxide % 102 70-130 Pass Hexachlor poxide % 108 70-130 Pass Methoxychlor % 112 70-130 Pass Toxaphene % 113 70-130 Pass ICS * % Recovery % 70 70-130 Pass Chardin Ketone % 70 70-130 Pass Chardin Ketone % 70 70-130 Pass <td>Dieldrin</td> <td></td> <td></td> <td>%</td> <td>110</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Dieldrin			%	110		70-130	Pass	
Endosultan il → 110 70-130 Pass Endosulfan sulpate % 118 70-130 Pass Endrin aldehyde % 105 70-130 Pass Endrin aldehyde % 121 70-130 Pass Endrin aldehyde % 121 70-130 Pass Endrin aldehyde % 108 70-130 Pass GaPHC (Lindane) % 102 70-130 Pass Heptachlor poxide % 102 70-130 Pass Heptachlor poxide % 113 70-130 Pass Toxaphene % 113 70-130 Pass LCS *& Recovery % 113 70-130 Pass LCS *& Recovery % 114 70-130 Pass LCS *& Recovery % 114 70-130 Pass Cadmium √% 114 70-130 Pass Cadmium √% 114 70-130 Pass <td>Endosulfan I</td> <td></td> <td></td> <td>%</td> <td>110</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Endosulfan I			%	110		70-130	Pass	
Endosulfan subpate % 118 70-130 Pass Endrin aldehyde 70-130 Pass 70-130 Pass Endrin aldehyde % 112 70-130 Pass Endrin aldehyde % 115 70-130 Pass endrin aldehyde % 102 70-130 Pass g-BHC (Lindane) % 102 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Methoxychlor % 112 70-130 Pass Toxaphene % 113 70-130 Pass CS *% Recovery ************************************	Endosulfan II			%	110		70-130	Pass	
Endrin V% 106 70-130 Pass Endrin aldehyde % 121 70-130 Pass Endrin aldehyde % 115 70-130 Pass g-BHC (Lindane) % 108 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Methoxychlor % 112 70-130 Pass Toxaphene % 113 70-130 Pass LCS *% Recovery % 113 70-130 Pass LCS *% Recovery % 113 70-130 Pass LCS *% Recovery % 114 70-130 Pass LCS *% Recovery % 114 70-130 Pass Chromium - % 114 70-130 Pass Cadmium - % 118 70-130 Pass Cadmium - % 114	Endosulfan sulphate			%	118		70-130	Pass	
Endin idehyde % 121 70-130 Pass Endin ketone % 115 70-130 Pass GelHC (Lindane) % 108 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Methoxychlor % 112 70-130 Pass Methoxychlor % 112 70-130 Pass CS-% Recovery % 112 70-130 Pass TRN >C10-C16 W % 79 70-130 Pass Cadmium W % 114 70-130 Pass Cadmium % 114 70-130 Pass Cadmium % 118 70-130 Pass Cadmium % 127 70-130 Pass Lead % 118 70-130 Pass <td>Endrin</td> <td></td> <td></td> <td>%</td> <td>105</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Endrin			%	105		70-130	Pass	
Endin ketone % 115 70-130 Pass g-BHC (Lindane) % 108 70-130 Pass Heptachlor epoxide % 102 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Hexachlor opoxide % 109 70-130 Pass Methoxychlor % 106 70-130 Pass Toxaphene % 112 70-130 Pass ICS - % Recovery % 113 70-130 Pass ICS - % Recovery % 113 70-130 Pass ICS - % Recovery % 79 70-130 Pass ICS - % Recovery % 79 70-130 Pass ICS - % Recovery % 114 70-130 Pass Cadmium - % 118 70-130 Pass Cadmium - % 112 70-130 Pass Lead - % 1124	Endrin aldehyde			%	121		70-130	Pass	
g-BHC (Lindane) % 108 70-130 Pass Heptachlor epoxide % 102 70-130 Pass Heptachlor epoxide % 109 70-130 Pass Hexachlor opoxide % 106 70-130 Pass Methoxychlor % 112 70-130 Pass Toxaphene % 113 70-130 Pass LCS - % Recovery % 113 70-130 Pass CLS - % Recovery % 79 70-130 Pass ICS - % Recovery % 79 70-130 Pass CAS recovery % 114 70-130 Pass Cadmium √% 114 70-130 Pass Chromium √% 114 70-130 Pass Copper √% 118 70-130 Pass Mercury % 117 70-130 Pass Nickel √% 117 70-130 Pass	Endrin ketone			%	115		70-130	Pass	
Heptachlor % 102 70-130 Pass Heptachlor goxide % 109 70-130 Pass Methoxychlor % 110 70-130 Pass Methoxychlor % 1112 70-130 Pass Toxaphene % 113 70-130 Pass LCS - & Recovery % 113 70-130 Pass CLS - & Recovery % 79 70-130 Pass LCS - & Recovery % 79 70-130 Pass LCS - & Recovery % 79 70-130 Pass LCS - & Recovery % 114 70-130 Pass LCS - & Recovery % 114 70-130 Pass Chromium % 118 70-130 Pass Cadmium % 112 70-130 Pass Lead 70-130 Pass	g-BHC (Lindane)			%	108		70-130	Pass	
Heptachlor epoxide % 109 70-130 Pass Hexachlor obenzene % 106 70-130 Pass Methoxychor % 1113 70-130 Pass Toxaphene % 1113 70-130 Pass LCS - % Recovery % 113 70-130 Pass Total Recoverable Hydrocarbons - 2013 NEPM Fractors % 70 70-130 Pass LCS - % Recovery % 79 70-130 Pass Kesvery % 114 70-130 Pass Cadmium % 114 70-130 Pass Cadmium % 114 70-130 Pass Cadmium % 112 70-130 Pass Cadmium % 114 70-130 Pass Cadmium % 112 70-130 Pass Cadmium % 1117 70-130 Pass	Heptachlor			%	102		70-130	Pass	
Hexachlorobenzene % 106 70-130 Pass Methoxychlor % 112 70-130 Pass Toxaphene % 113 70-130 Pass LCS -% Recovery 113 70-130 Pass TRH >C10-C16 % 79 70-130 Pass CS -% Recovery % 79 70-130 Pass Heavy Metals % 79 70-130 Pass CS -% Recovery % 114 70-130 Pass Cadmium % 114 70-130 Pass Cadmium % 118 70-130 Pass Copper % 118 70-130 Pass Lead % 121 70-130 Pass Lead % 121 70-130 Pass Zinc % 121 70-130 Pass Zinc % 117 70-130 Pass	Heptachlor epoxide			%	109		70-130	Pass	
Methoxychlor % 112 70-130 Pass Toxaphene % 113 70-130 Pass Inclusion LCS - % Recovery 113 70-130 Pass Inclusion Inclusio	Hexachlorobenzene			%	106		70-130	Pass	
Toxaphene % 113 70-130 Pass LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions % 79 70-130 Pass TRH > C10-C16 % 79 70-130 Pass 1 LCS - % Recovery % 79 70-130 Pass 1 Arsenic ////////////////////////////////////	Methoxychlor			%	112		70-130	Pass	
LCS - % Recovery () () Total Recoverable Hydrocarbons - 2013 NEPM Fractions % 79 70-130 Pass CRE - % 79 70-130 Pass () CS - % Recovery Heavy Metals ////////////////////////////////////	Toxaphene			%	113		70-130	Pass	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions ////////////////////////////////////	LCS - % Recovery								
TRH >C10-C16 % 79 70-130 Pass LCS -% Recovery ////////////////////////////////////	Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
LCS - % Recovery Heavy Metals ////////////////////////////////////	TRH >C10-C16			%	79		70-130	Pass	
Heavy Metals Image: Note of the section o	LCS - % Recovery						-		
Arsenic % 114 70-130 Pass Cadmium 70-130 Pass Cadmium % 118 70-130 Pass Copper % 127 70-130 Pass Copper % 119 70-130 Pass Lead % 124 70-130 Pass Mercury % 118 70-130 Pass Nickel % 117 70-130 Pass Zinc % 117 70-130 Pass Test Lab Sample ID QA Units Result 1 70-130 Pass Acceapathene S16-Se10151 NCP % 117 70-130 Pass Acenaphthene S16-Se10151 NCP % 117 70-130 Pass Actenaphthylene S16-Se10151 NCP % 116 70-130 Pass Actenaphthylene S16-Se10151 NCP %<	Heavy Metals								
Cadmium % 118 70-130 Pass Chromium % 127 70-130 Pass 1 Copper % 119 70-130 Pass 1 Lead 70-130 Pass 1 70-130 Pass 1 Mercury % 124 70-130 Pass 1<	Arsenic			%	114		70-130	Pass	
Chromium 9% 127 70-130 Pass Copper % 119 70-130 Pass 1 Lead 70-130 Pass 1 70-130 Pass 1 Mercury % 124 70-130 Pass 1 Nickel 70-130 Pass 1 70-130 Pass 1 Zinc 70-130 Pass 1 70-130 Pass 1 Test Lab Sample ID QA Source Units Result 1 70-130 Pass Qualifying Spike -% Recovery % 121 70-130 Pass Qualifying Accenaphthene S16-Se10151 NCP % 117 70-130 Pass Immits Anthracene S16-Se10151 NCP % 117 70-130 Pass Immits Immits <td< td=""><td>Cadmium</td><td></td><td></td><td>%</td><td>118</td><td></td><td>70-130</td><td>Pass</td><td></td></td<>	Cadmium			%	118		70-130	Pass	
Copper % 119 70-130 Pass Lead γ 124 70-130 Pass Mercury % 118 70-130 Pass Nickel γ 118 70-130 Pass Zinc % 117 70-130 Pass Test Lab Sample ID QA Sourc Vinits Result 1 Result 1 Receptance Limits Pass Qualifying Code Spike -% Recovery % 117 70-130 Pass Qualifying Code Q	Chromium			%	127		70-130	Pass	
LeadY12470-130PassMercury%11870-130PassNickelNickelY%11770-130PassZincZincKab Sample IDQA SourceVinitsResult 170-130PassResult 70-130PassResult 70	Copper			%	119		70-130	Pass	
Mercury%11870-130PassNickel%11770-130PassZinc%12170-130PassTestLab Sample IDQA SourceUnitsResult 1Acceptance LimitsPassQualifying CodeSpike - % RecoveryNCP%11770-130PassQualifying CodeAcenaphtheneS16-Se10151NCP%11770-130PassAcenaphthyleneS16-Se10151NCP%11570-130PassAnthraceneS16-Se10151NCP%11670-130PassBenz(a)anthraceneS16-Se10151NCP%11470-130PassBenz(b)jfluorantheneS16-Se10151NCP%10270-130PassBenz(b,i)peryleneS16-Se10151NCP%8970-130PassBenz(b,i)fluorantheneS16-Se10151NCP%8170-130PassBenz(b,i)fluorantheneS16-Se10151NCP%8170-130PassBenz(b,i)fluorantheneS16-Se10151NCP%8170-130PassBenz(b,i)fluorantheneS16-Se10151NCP%12470-130PassBenz(b,i)fluorantheneS16-Se10151NCP%12670-130PassBenz(b,i)fluorantheneS16-Se10151NCP%12470-130Pass <td>Lead</td> <td></td> <td></td> <td>%</td> <td>124</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Lead			%	124		70-130	Pass	
Nickel%11770-130PassZincKab Sample IDQA SourceUnitsResult 1Acceptance LimitsPassQualifying CodeSpike - % RecoveryKecoveryResult 1Result 1 </td <td>Mercury</td> <td></td> <td></td> <td>%</td> <td>118</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Mercury			%	118		70-130	Pass	
Zinc%12170-130PassTestLab Sample IDQA SourceUnitsResult 1Acceptance LimitsPassQualifying CodeSpike - % RecoveryPolycyclic Aromatic HydrocarbonsNCP%117170-130PassQualifying CodeAcenaphtheneS16-Se10151NCP%11770-130Pass1AcenaphthyleneS16-Se10151NCP%11570-130Pass1AnthraceneS16-Se10151NCP%11670-130Pass1Benzo(a)pyreneS16-Se10151NCP%10270-130Pass1Benzo(b&j)fluorantheneS16-Se10151NCP%8970-130Pass1Benzo(g.h.i)peryleneS16-Se10151NCP%12470-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%12470-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%12670-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%12470-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%12670-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%7670-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%7670-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%76 </td <td>Nickel</td> <td></td> <td></td> <td>%</td> <td>117</td> <td></td> <td>70-130</td> <td>Pass</td> <td></td>	Nickel			%	117		70-130	Pass	
TestLab Sample IDQA SourceUnitsResult 1AcceptancePassQualifying CodeSpike - % RecoveryPolycyclic Aromatic HydrocarbonsAcenaphtheneS16-Se10151NCP%1171111AcenaphthyleneS16-Se10151NCP%115170-130Pass1AcenaphthyleneS16-Se10151NCP%116170-130Pass1AnthraceneS16-Se10151NCP%114170-130Pass1Benz(a)anthraceneS16-Se10151NCP%114170-130Pass1Benzo(a)pyreneS16-Se10151NCP%8910270-130Pass1Benzo(b&)fluorantheneS16-Se10151NCP%8170-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%12470-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%12670-130Pass1Benzo(k)fluorantheneS16-Se10151NCP%12670-130Pass1Dibenz(a.h)anthraceneS16-Se10151NCP%12670-130Pass1Dibenz(a.h)anthraceneS16-Se10151NCP%12670-130Pass1Dibenz(a.h)anthraceneS16-Se10151NCP%12670-130Pass1Dibenz(a.h)anthraceneS16-Se10151NCP%126	Zinc			%	121		70-130	Pass	
Spike - % Recovery Result 1 Result 1 70-130 Pass Acenaphthene S16-Se10151 NCP % 117 70-130 Pass Acenaphthylene S16-Se10151 NCP % 115 70-130 Pass Anthracene S16-Se10151 NCP % 116 70-130 Pass Benz(a)anthracene S16-Se10151 NCP % 114 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 89 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass	Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Polycyclic Aromatic Hydrocarbons Result 1 Comparison Result 1 Comparison Result 1 Comparison	Spike - % Recovery					· ·	•		
Acenaphthene S16-Se10151 NCP % 117 70-130 Pass Acenaphthylene S16-Se10151 NCP % 115 70-130 Pass Anthracene S16-Se10151 NCP % 116 70-130 Pass Anthracene S16-Se10151 NCP % 116 70-130 Pass Benz(a)anthracene S16-Se10151 NCP % 114 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(b&j)fluoranthene S16-Se10151 NCP % 89 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass Chrysene S16-Se10151 NCP % 126 70-130 <	Polycyclic Aromatic Hydrocarbons				Result 1				
Acenaphthylene S16-Se10151 NCP % 115 70-130 Pass Anthracene S16-Se10151 NCP % 116 70-130 Pass Benz(a)anthracene S16-Se10151 NCP % 114 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 114 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 89 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass Chrysene S16-Se10151 NCP % 126 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-130	Acenaphthene	S16-Se10151	NCP	%	117		70-130	Pass	
Anthracene S16-Se10151 NCP % 116 70-130 Pass Benz(a)anthracene S16-Se10151 NCP % 114 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 114 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(b&i)fluoranthene S16-Se10151 NCP % 89 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass Chrysene S16-Se10151 NCP % 126 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-1	Acenaphthylene	S16-Se10151	NCP	%	115		70-130	Pass	
Benz(a)anthracene S16-Se10151 NCP % 114 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(b&j)fluoranthene S16-Se10151 NCP % 89 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 81 70-130 Pass Chrysene S16-Se10151 NCP % 124 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 126 70-130 Pass	Anthracene	S16-Se10151	NCP	%	116		70-130	Pass	
Benzo(a)pyrene S16-Se10151 NCP % 102 70-130 Pass Benzo(b&j)fluoranthene S16-Se10151 NCP % 89 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass Chrysene S16-Se10151 NCP % 126 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-130 Pass	Benz(a)anthracene	S16-Se10151	NCP	%	114		70-130	Pass	
Benzo(b&j)fluoranthene S16-Se10151 NCP % 89 70-130 Pass Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass Chrysene S16-Se10151 NCP % 126 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-130 Pass	Benzo(a)pyrene	S16-Se10151	NCP	%	102		70-130	Pass	
Benzo(g.h.i)perylene S16-Se10151 NCP % 81 70-130 Pass Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass Chrysene S16-Se10151 NCP % 126 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-130 Pass	Benzo(b&j)fluoranthene	S16-Se10151	NCP	%	89		70-130	Pass	
Benzo(k)fluoranthene S16-Se10151 NCP % 124 70-130 Pass Chrysene S16-Se10151 NCP % 126 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-130 Pass	Benzo(g.h.i)perylene	S16-Se10151	NCP	%	81		70-130	Pass	
Chrysene S16-Se10151 NCP % 126 70-130 Pass Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-130 Pass	Benzo(k)fluoranthene	S16-Se10151	NCP	%	124		70-130	Pass	
Dibenz(a.h)anthracene S16-Se10151 NCP % 76 70-130 Pass Elverathere S16-Se10454 NCP % 76 70-130 Pass	Chrysene	S16-Se10151	NCP	%	126		70-130	Pass	
	Dibenz(a.h)anthracene	S16-Se10151	NCP	%	76		70-130	Pass	
Fluorantnene 516-5610151 NCP % 121 /0-130 Pass	Fluoranthene	S16-Se10151	NCP	%	121		70-130	Pass	
Fluorene S16-Se10151 NCP % 116 70-130 Pass	Fluorene	S16-Se10151	NCP	%	116		70-130	Pass	
Indeno(1.2.3-cd)pyrene S16-Se10151 NCP % 77 70-130 Pass	Indeno(1.2.3-cd)pyrene	S16-Se10151	NCP	%	77		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene	S16-Se10151	NCP	%	118		70-130	Pass	
Phenanthrene	S16-Se10151	NCP	%	122		70-130	Pass	
Pyrene	S16-Se10151	NCP	%	117		70-130	Pass	
Spike - % Recovery								
Organochlorine Pesticides				Result 1				
Toxaphene	S16-Se05918	NCP	%	86		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S16-Se10144	CP	%	85		70-130	Pass	
Spike - % Recovery								
втех				Result 1				
Benzene	S16-Se10144	CP	%	87		70-130	Pass	
Toluene	S16-Se10144	CP	%	115		70-130	Pass	
Ethylbenzene	S16-Se10144	CP	%	116		70-130	Pass	
m&p-Xylenes	S16-Se10144	CP	%	120		70-130	Pass	
o-Xylene	S16-Se10144	CP	%	120		70-130	Pass	
Xylenes - Total	S16-Se10144	CP	%	120		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	S16-Se10144	CP	%	122		70-130	Pass	
TRH C6-C10	S16-Se10144	CP	%	119		70-130	Pass	
Spike - % Recovery				1	1	1	-	
Organochlorine Pesticides				Result 1				
Chlordanes - Total	S16-Se10144	CP	%	210		70-130	Fail	
4.4'-DDD	S16-Se10144	CP	%	117		70-130	Pass	
4.4'-DDE	S16-Se10144	CP	%	112		70-130	Pass	
4.4'-DDT	S16-Se10144	CP	%	78		70-130	Pass	
a-BHC	S16-Se10144	CP	%	102		70-130	Pass	
Aldrin	S16-Se10144	CP	%	105		70-130	Pass	
b-BHC	S16-Se10144	CP	%	100		70-130	Pass	
d-BHC	S16-Se10144	CP	%	105		70-130	Pass	
Dieldrin	S16-Se10144	CP	%	107		70-130	Pass	
Endosulfan I	S16-Se10144	CP	%	106		70-130	Pass	
Endosulfan II	S16-Se10144	CP	%	106		70-130	Pass	
Endosulfan sulphate	S16-Se10144	CP	%	110		70-130	Pass	
Endrin	S16-Se10144	CP	%	98		70-130	Pass	
Endrin aldehyde	S16-Se10144	CP	%	123		70-130	Pass	
Endrin ketone	S16-Se10144	CP	%	116		70-130	Pass	
g-BHC (Lindane)	S16-Se10144	CP	%	103		70-130	Pass	
Heptachlor	S16-Se10144	CP	%	100		70-130	Pass	
Heptachlor epoxide	S16-Se10144	CP	%	107		70-130	Pass	
Hexachlorobenzene	S16-Se10144	CP	%	100		70-130	Pass	
Methoxychlor	S16-Se10144	CP	%	87		70-130	Pass	
Spike - % Recovery				1		I	[
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			_	
TRH C10-C14	S16-Se10146	CP	%	70		70-130	Pass	
Spike - % Recovery						1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	a :	Result 1				
1KH >C10-C16	S16-Se10146	СР	%	75		70-130	Pass	
Spike - % Recovery								
Heavy Metals	0 (0, 0, 1, 1, 1, 1)	0-	a :	Result 1				
Arsenic	S16-Se10146	CP	%	90		70-130	Pass	
Cadmium	S16-Se10146	CP	%	93		70-130	Pass	
Chromium	S16-Se10146	CP	%	100		70-130	Pass	

Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
Copper	S16-Se101/6	CP	0/_	95			70-130	Pass	Code
Load	S16 So10146		0/	117			70-130	Dooo	
Morcury	S16 So10146		/0 0/.	05			70-130	Pass	
Niekol	S16 So10146		70	90			70-130	Pass	
	S16-Se10146		<u>%</u>	70			70-130	Pass	
	510-5010140		70	/0			70-130	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD		_	
TRH C6-C9	S16-Se10143	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate							1		
BTEX				Result 1	Result 2	RPD		_	
Benzene	S16-Se10143	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S16-Se10143	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S16-Se10143	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S16-Se10143	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S16-Se10143	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S16-Se10143	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S16-Se10143	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S16-Se10143	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				1			1		
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S16-Se10143	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Se10143	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Se10143	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Se10143	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Se10143	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Se10143	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Se10143	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-Se10143	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Se10144	СР	%	14	14	3.0	30%	Pass	
Duplicate				,					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S16-Se10145	CP	ma/ka	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Se10145	CP	ma/ka	81	73	11	30%	Pass	
TRH C29-C36	S16-Se10145	CP	ma/ka	78	74	4.0	30%	Pass	
	2.2.23.01.0								

Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Se10145	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Se10145	СР	mg/kg	130	120	7.0	30%	Pass	
TRH >C34-C40	S16-Se10145	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Se10145	CP	mg/kg	3.7	3.6	4.0	30%	Pass	
Cadmium	S16-Se10145	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Se10145	CP	mg/kg	9.4	9.9	6.0	30%	Pass	
Copper	S16-Se10145	CP	mg/kg	12	12	1.0	30%	Pass	
Lead	S16-Se10145	CP	mg/kg	16	15	1.0	30%	Pass	
Mercury	S16-Se10145	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S16-Se10145	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S16-Se10145	CP	mg/kg	11	12	6.0	30%	Pass	
Duplicate	Duplicate								
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-Se10146	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

🔅 eurofins

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols ha

writere we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
 E1 is determined by arithmetically subtraction the "Total RTEX" value from the "C6-C10" value. The "Total RTEX" value is obtained by summing the concentrations of RTEX.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya	Analytical Services Manager
Ivan Taylor	Senior Analyst-Metal (NSW)
Rhys Thomas	Senior Analyst-Asbestos (NSW)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

H.

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Geo-Logix P/L Bld Q2 Level 3, 230 Warriewood NSW 2102	99/4 Daydream St
Attention: Report Project Name Project ID Received Date Date Reported	Tim Gunns 515269-AID 80 EDMONDSON AVE 1601067 Sep 09, 2016 Sep 16, 2016
Methodology: Asbestos ID	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.
Subsampling Soil Samples	The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding $400 \pm 30^{\circ}$ C. The resultant material is then ground and examined in accordance with AS 4964-2004.
Limit of Reporting	The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins mgt NATA accreditation as designated by an asterisk.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name
Project ID
Date Sampled
Report

80 EDMONDSON AVE 1601067

515269-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
T1/1/0.2	16-Se10140	not provided	Approximate Sample 93g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected. Organic fibre detected. No respirable fibres detected.
T1/2/0.8	16-Se10141	not provided	Approximate Sample 29g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected. Organic fibre detected. No respirable fibres detected.
T1/3/0.2	16-Se10142	not provided	Approximate Sample 21g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected. Organic fibre detected. No respirable fibres detected.
T2/1/0.3	16-Se10143	not provided	Approximate Sample 26g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected. Organic fibre detected. No respirable fibres detected.
T2/2/0.5	16-Se10144	not provided	Approximate Sample 68g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected. Organic fibre detected. No respirable fibres detected.
T2/3/0.2	16-Se10145	not provided	Approximate Sample 37g Sample consisted of: Brown coarse grain soil and rocks.	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneySep 15, 2016Indefinite

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Units

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight b	pasis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration:		fibres/mL
Flowrate:		L/min
Terms		
Dry	Where a moisture has been determined on a solid sample the resul	t is expressed on a dry basis.
LOR	Limit of Reporting.	
COC	Chain of custody	
SRA	Sample Receipt Advice	
ISO	International Stardards Organisation	
AS	Australian Standards	
WA DOH	Western Australia Department of Health	
NOHSC	National Occupational Health and Safety Commission	
ACM	Bonded asbestos-containing material means any material containin although possibly broken or fragmented, and where the asbestos is to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on a ceiling plaster, ceiling tiles, and gasket materials. This term is restrict approximates the thickness of common asbestos cement sheeting a for fibre release.	g more than 1% asbestos and comprises asbestos-containing-material which is in sound condition, bound in a matrix such as cement or resin. Common examples of ACM include but are not limited acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and cted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it and for fragments to be smaller than this would imply a high degree of damage and hence potential
FA	FA comprises friable asbestos material and includes severely weath is defined here as asbestos material that is in a degraded condition was previously bonded and is now significantly degraded (crumbling	hered cement sheet, insulation products and woven asbestos material. This type of friable asbestos such that it can be broken or crumbled by hand pressure. This material is typically unbonded or g).
PACM	Presumed Asbestos-Containing Material means thermal system ins than 1980 that are assumed to contain greater than one percent asl	ulation and surfacing material found in buildings, vessels, and vessel sections constructed no later bestos but have not been sampled or analyzed to verify or negate the presence of asbestos.
AF	Asbestos fines (AF) are defined as free fibres, or fibre bundles, sma small fibres (< 5 microns in length) are not considered to be such a (Note that for bonded ACM fragments to pass through a 7 mm x 7 n	aller than 7mm. It is the free fibres which present the greatest risk to human health, although very risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. nm sieve implies a substatntial degree of damage which increases the potential for fibre release.)
AC	Asbestos cement means a mixture of cement and asbestos fibres (t	typically 90:10 ratios).

Comments

The samples received were not collected in approved asbestos bags and were therefore sub-sampled from the 250mL glass jars. Valid subsampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

CodeDescriptionN/ANot applicable

Authorised by:

Rhys Thomas

Senior Analyst-Asbestos (NSW)

Glenn Jackson National Operations Manager

Final Report – this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

	Geo Logix						CHAIN		JS	тО	DY					Pag	ge	1 0	of 1	I	
	-		Pro	ject l	Mana	ger:	Tim Gunns					Purch	hase Order N	0:	00	14	9-	F		-	
Geo-Logix Pty Building Q2, Le	Ltd vel 3 Unit 2309/4		Con	ntact	Ema	il:	tgunns@geo-logix.com.au				-	Quet	Deference	n/a	<u> </u>					-	
Daydream St, V	Varriewood		Pro	iect I	Name		80 Colorad				-	Quote	e Aelerence:							_	
ARN- 86 116 8	350 00		110	Jecri	T CITIC	<i>.</i>	au camona	500	30		-	Invoid	ce to:	acc	ounts(@geo	-logi	ix.con	<u>n.au</u>		515269
P: (02) 9979 17	122		Pro	ject l	Numl)er:	1601067	Date Sub	mitte	ed:	9-9-16	TAT r	equired:	-	STC	2					
								1			Δ	NALY	SIS REOL	IIDER			-		-		
		1	1-	IN	latrix	(- T		i r			
						5	1			0											
						ACI				12											Eurofins MGT
				fer		int/			2	l R										- II	Suite Codes
Lab ID	Sample ID	Date	So	Ň	Air	<u>5</u> Dai	Comments	Bŝ	Ŧ	X											
	T1/1/0.2		X					X		X										B1	TRH/BTEXN
	T1/2/08		X							\mathbf{x}							+			B1A	TRH/MAH
	12/20		X							$\overline{\cdot}$		- - -								- B2	TRH/BTEXN/Pb
	ILYS/0.1		+		\vdash					Х		++				_			+	B2A	TRH/MAH/Pb
	12/1/03					_		-X	_	X										B3	PAH/Phenois
	12/1/0.5		×					X	_	$\left X \right $										B44	TRH/BIEXN/PAH
	12/3/0.2		X					X		X					- -						TRH/BTEXN/MA7
	Insi		X					X		~		- -								B6	TRH/BTEXN/M8
													╶╁╺┿╌┼╸							- B7	TRH/BTEXN/PAH/M8
										_		+								B7A	TRH/BTEXN/PAH/Phenois/M8
			+																	B8	TRH/VOC/PAH/M8
ļ																				89	TRH/BTEXN/PAH/OCP/M8
																				B10	TRH/BTEXN/PAH/OCP/OPP/MB
								-					+-++-		-	+-+				- B11	Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/N
-									_	_			+ + +			+				- B11A	B11/Alkalinity
<u> </u>									-+					+							B11/EC/TDS
			+		_		<u></u>													B124	TRIVE (EXN/Oxygenates/Ethanol
																				B13	OCP/PCB
						1						+ +-				\uparrow		-	-	B14	OCP/OPP
										-			+-+-+-	+ +		+			-	- B15	OCP/OPP/PCB
			╆╋		-+				-+			+ +-		+-+		+				- B16	TDS/SO4/CH4/Alk/BOD/COD/HPC
	<u> </u>		+		\rightarrow					-+					_					817	SO4/NO3/Fe++/HPC/CUB
																				B18	CI-/SO4/pH
																				B19	N/P/K
					T									┼╃		+	+		+	- B20	CEC/%ESP/Ca/Ma/Na/K
11-1		_	<u> </u>													1 1				R21	%Ee/ CEC/ pH/CaCl2)/ TOC/ % Cb

	CHAIN OF C	CUSTODY	the second s
Relinquished by: Ben Reachate/Time: 919/16	Signature:	Received by Murgag Date/Time:	Signature: Bok
Q3.2.1 QF_024 Eurofins MGT Chain of Custody Bec Signall 9.9.11	1300 20	10	

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Geo-Logix P/L
Contact name: Project name: Project ID: COC number: Turn around time: Date/Time received: Eurofins mgt reference:	Tim Gunns 80 EDMONDSON AVE 1601067 Not provided 5 Day Sep 9, 2016 1:00 PM 515269

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 1.8 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Tim Gunns - tgunns@geo-logix.com.au.

38 Years of Environmental Analysis & Experience

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Name: Geo-Logix P/L Address: Bid Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102		Order Repor Phone Fax:		der No port #: one: x:	PO1497 515269 02 9979 1722 02 9979 1222	Received: Due: Priority: Contact Name:	Sep 9, 2016 1:00 PM Sep 16, 2016 5 Day Tim Gunns				
Pro Pro	oject Name: oject ID:	80 EDMOND 1601067	SON AVE						Eurof	ins mgt Analytical S	ervices Manager : Nibha Vaidya
		Sa	mple Detail			Asbestos Absence /Presence	Moisture Set	Eurofins mgt Suite B9			
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71							
Sydr	ney Laboratory	- NATA Site # 1	8217			Х	Х	X			
Brisk	bane Laboratory	/ - NATA Site #	20794								
Exte	rnal Laboratory				1						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	T1/1/0.2	Not Provided		Soil	S16-Se10140	х	Х	Х			
2	T1/2/0.8	Not Provided		Soil	S16-Se10141	Х	х	х			
3	T1/3/0.2	Not Provided		Soil	S16-Se10142	х	х	x			
4	T2/1/0.3	Not Provided		Soil	S16-Se10143	х	Х	x			
5	T2/2/0.5	Not Provided		Soil	S16-Se10144	Х	Х	X			
6	T2/3/0.2	Not Provided		Soil	S16-Se10145	Х	Х	X			
7	DS1	Not Provided		Soil	S16-Se10146		Х	Х			
Test	Counts					6	7	7			

Certificate of Analysis

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:	
------------	--

Tim Gunns

Report
Project name
Project ID
Received Date

518936-S-V2 AUSTRAL PHASE 2 1601114B Oct 07, 2016

Client Sample ID			C1	C2	C3	C4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07063	S16-Oc07066	S16-Oc07069	S16-Oc07072
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	94	98	93	99
Tetrachloro-m-xylene (surr.)	1	%	82	84	73	81
Heavy Metals						
Arsenic	2	mg/kg	< 2	5.9	5.8	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	13	20	17	17
Copper	5	mg/kg	19	18	13	11
Lead	5	mg/kg	31	28	34	25
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	9.0	13	10	5.7
Zinc	5	mg/kg	40	55	47	23
% Moisture	1	%	8.3	11	10	17

Client Sample ID			C5	C6	C7	C8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07075	S16-Oc07078	S16-Oc07081	S16-Oc07084
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	105	101	108	113
Tetrachloro-m-xylene (surr.)	1	%	94	95	80	102
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	7.5	5.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	17	40	23
Copper	5	mg/kg	27	25	16	22
Lead	5	mg/kg	49	30	34	33
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	9.0	6.0	8.9	5.9
Zinc	5	mg/kg	60	35	22	20
% Moisture	1	%	29	17	11	15

Client Sample ID Sample Matrix			C9 Soil	C10 Soil	C11 Soil	C12 Soil
Eurofins mgt Sample No.			S16-Oc07087	S16-Oc07090	S16-Oc07093	S16-Oc07096
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	0.13	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			C9	C10	C11	C12
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07087	S16-Oc07090	S16-Oc07093	S16-Oc07096
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
d-BHC	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Toxaphene	1	mg/kg	< 1	< 1	< 1	< 1
Dibutylchlorendate (surr.)	1	%	109	110	95	105
Tetrachloro-m-xylene (surr.)	1	%	96	99	73	92
Heavy Metals						
Arsenic	2	mg/kg	5.4	7.9	17	13
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	42	36	49	41
Copper	5	mg/kg	16	33	41	58
Lead	5	mg/kg	41	52	63	69
Mercury	0.05	mg/kg	< 0.05	< 0.05	0.15	0.09
Nickel	5	mg/kg	5.6	7.0	7.0	14
Zinc	5	mg/kg	19	280	36	89
% Moisture	1	%	16	21	10	15

Client Sample ID			SS1	SS2	SS3	SS4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07099	S16-Oc07100	S16-Oc07101	S16-Oc07102
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	54	-	-	-
TRH C15-C28	50	mg/kg	62	-	-	-
TRH C29-C36	50	mg/kg	51	-	-	-
TRH C10-36 (Total)	50	mg/kg	167	-	-	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	74	-	-	-

Client Sample ID			SS1	SS2	SS3	SS4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07099	S16-Oc07100	S16-Oc07101	S16-Oc07102
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	116	-	-	-
p-Terphenyl-d14 (surr.)	1	%	115	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
Heavy Metals						
Arsenic	2	mg/kg	75	-	-	-
Cadmium	0.4	mg/kg	1.2	-	-	-
Chromium	5	mg/kg	110	-	-	-
Copper	5	mg/kg	180	-	-	-
Lead	5	mg/kg	1400	67	84	140
Mercury	0.05	mg/kg	< 0.05	-	-	-
Nickel	5	mg/kg	68	-	-	-
Zinc	5	mg/kg	1100	-	-	-
% Moisture	1	%	16	19	7.7	23

Client Sample ID			SS5	SS6	SS7	SS8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins I mot Sample No.			S16-Oc07103	S16-Oc07104	S16-Oc07105	S16-Oc07106
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
		1.1.4.14	001 03, 2010	001 03, 2010	001 03, 2010	001 03, 2010
Test/Reference	LUR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	"				
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	31
TRH C15-C28	50	mg/kg	-	-	-	88
TRH C29-C36	50	mg/kg	-	-	-	100
TRH C10-36 (Total)	50	mg/kg	-	-	-	219
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	68
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.1-Dichloroethene	0.5	mg/kg	-	< 0.5	< 0.5	-
1.1.1-Trichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.1.2-Trichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.2-Dibromoethane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.2-Dichlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	-
1.2-Dichloroethane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.2-Dichloropropane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.2.3-Trichloropropane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.2.4-Trimethylbenzene	0.5	mg/kg	-	< 0.5	< 0.5	-
1.3-Dichlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	-
1.3-Dichloropropane	0.5	mg/kg	-	< 0.5	< 0.5	-
1.3.5-Trimethylbenzene	0.5	mg/kg	-	< 0.5	< 0.5	-
1.4-Dichlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	-
2-Butanone (MEK)	0.5	mg/kg	-	< 0.5	< 0.5	-
2-Propanone (Acetone)	5	mg/kg	-	< 5	< 5	-
4-Chlorotoluene	0.5	mg/kg	-	< 0.5	< 0.5	-
4-Methyl-2-pentanone (MIBK)	0.5	mg/kg	-	< 0.5	< 0.5	-
Allyl chloride	0.05	mg/kg	-	< 0.05	< 0.05	-
Benzene	0.1	mg/kg	-	< 0.1	< 0.1	-
Bromobenzene	0.5	mg/kg	-	< 0.5	< 0.5	-
Bromochloromethane	0.5	mg/kg	-	< 0.5	< 0.5	-
Bromodichloromethane	0.5	mg/kg	-	< 0.5	< 0.5	-
Bromoform	0.5	mg/kg	-	< 0.5	< 0.5	-
Bromomethane	0.5	mg/kg	-	< 0.5	< 0.5	-
Carbon disulfide	0.5	mg/kg	-	< 0.5	< 0.5	-
Carbon Tetrachloride	0.5	mg/kg	-	< 0.5	< 0.5	-
Chlorobenzene	0.5	mg/kg	-	< 0.5	< 0.5	-
Chloroethane	0.5	mg/kg	-	< 0.5	< 0.5	-
Chloroform	0.5	mg/kg	-	< 0.5	< 0.5	-
Chloromethane	0.5	mg/kg	-	< 0.5	< 0.5	-
cis-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	< 0.5	-
cis-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	< 0.5	-

Client Sample ID			SS5	SS6	SS7	SS8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07103	S16-Oc07104	S16-Oc07105	S16-Oc07106
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	I OR	Unit				
Volatile Organics						
Dibromochloromethane	0.5	ma/ka	-	< 0.5	< 0.5	-
Dibromomethane	0.5	ma/ka	-	< 0.5	< 0.5	-
Dichlorodifluoromethane	0.5	ma/ka	-	< 0.5	< 0.5	-
Ethylbenzene	0.1	ma/ka	-	< 0.1	< 0.1	-
Iodomethane	0.5	ma/ka	-	< 0.5	< 0.5	-
Isopropyl benzene (Cumene)	0.5	ma/ka	-	< 0.5	< 0.5	-
m&p-Xvlenes	0.2	ma/ka	-	< 0.2	< 0.2	-
Methylene Chloride	0.5	mg/kg	-	< 0.5	< 0.5	-
o-Xylene	0.1	mg/kg	-	< 0.1	< 0.1	-
Styrene	0.5	mg/kg	-	< 0.5	< 0.5	-
Tetrachloroethene	0.5	mg/kg	-	< 0.5	< 0.5	-
Toluene	0.1	mg/kg	-	< 0.1	< 0.1	-
trans-1.2-Dichloroethene	0.5	mg/kg	-	< 0.5	< 0.5	-
trans-1.3-Dichloropropene	0.5	mg/kg	-	< 0.5	< 0.5	-
Trichloroethene	0.5	mg/kg	-	< 0.5	< 0.5	-
Trichlorofluoromethane	0.5	mg/kg	-	< 0.5	< 0.5	-
Vinyl chloride	0.5	mg/kg	-	< 0.5	< 0.5	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	< 0.3	-
Fluorobenzene (surr.)	1	%	-	95	94	-
4-Bromofluorobenzene (surr.)	1	%	-	111	129	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	-	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	90
p-Terphenyl-d14 (surr.)	1	%	-	-	-	70

Client Sample ID Sample Matrix			SS5 Soil	SS6 Soil	SS7 Soil	SS8 Soil
Eurofins mat Sample No.			S16-Oc07103	S16-Oc07104	S16-Oc07105	S16-Oc07106
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	-	160
TRH >C34-C40	100	mg/kg	-	-	-	< 100
Heavy Metals						
Arsenic	2	mg/kg	-	-	-	22
Cadmium	0.4	mg/kg	-	-	-	2.4
Chromium	5	mg/kg	-	-	-	69
Copper	5	mg/kg	-	-	-	410
Lead	5	mg/kg	64	-	-	110
Mercury	0.05	mg/kg	-	-	-	0.07
Nickel	5	mg/kg	-	-	-	72
Zinc	5	mg/kg	-	-	-	2700
% Moisture	1	%	14	9.1	18	16

Client Sample ID			SS9	SS10	BH1/0.1-0.2	SP1/0.3-0.35
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07107	S16-Oc07108	S16-Oc07109	S16-Oc07114
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 06, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	31	54	41	< 20
TRH C15-C28	50	mg/kg	< 50	190	150	< 50
TRH C29-C36	50	mg/kg	< 50	180	210	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	424	401	< 50
втех						
Benzene	0.1	mg/kg	0.7	0.2	< 0.1	< 0.1
Toluene	0.1	mg/kg	0.2	0.2	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	77	85	95	92
Volatile Organics						
1.1-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
1.1.1-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.1.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2-Trichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.1.2.2-Tetrachloroethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dibromoethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichloroethane	0.5	mg/kg	-	-	< 0.5	-
1.2-Dichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.2.3-Trichloropropane	0.5	mg/kg	-	-	< 0.5	-
1.2.4-Trimethylbenzene	0.5	mg/kg	-	-	< 0.5	-
1.3-Dichlorobenzene	0.5	mg/kg	-	-	< 0.5	-

Client Sample ID			SS9	SS10	BH1/0.1-0.2	SP1/0.3-0.35
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07107	S16-Oc07108	S16-Oc07109	S16-Oc07114
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 06, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Volatile Organics	LOIN	Onit				
1.3-Dichloropropane	0.5	ma/ka		_	< 0.5	_
1.3.5-Trimethylbenzene	0.5	ma/ka		_	< 0.5	_
1.4-Dichlorobenzene	0.5	ma/ka	-	-	< 0.5	-
2-Butanone (MEK)	0.5	ma/ka	-	_	< 0.5	-
2-Propanone (Acetone)	5	ma/ka	-	_	< 5	-
4-Chlorotoluene	0.5	ma/ka	-	-	< 0.5	-
4-Methyl-2-pentanone (MIBK)	0.5	ma/ka	-	-	< 0.5	-
Allyl chloride	0.05	ma/ka	-	-	< 0.05	-
Benzene	0.1	ma/ka	-	-	< 0.1	-
Bromobenzene	0.5	ma/ka	-	-	< 0.5	-
Bromochloromethane	0.5	ma/ka	-	-	< 0.5	-
Bromodichloromethane	0.5	ma/ka	-	-	< 0.5	-
Bromoform	0.5	ma/ka	-	_	< 0.5	-
Bromomethane	0.5	ma/ka	-	-	< 0.5	-
Carbon disulfide	0.5	ma/ka	-	-	< 0.5	_
Carbon Tetrachloride	0.5	ma/ka	-	-	< 0.5	_
Chlorobenzene	0.5	ma/ka	-	_	< 0.5	-
Chloroethane	0.5	ma/ka	-	-	< 0.5	-
Chloroform	0.5	ma/ka	-	-	< 0.5	-
Chloromethane	0.5	ma/ka	-	-	< 0.5	-
cis-1.2-Dichloroethene	0.5	ma/ka	-	-	< 0.5	-
cis-1.3-Dichloropropene	0.5	ma/ka	-	-	< 0.5	-
Dibromochloromethane	0.5	ma/ka	-	-	< 0.5	-
Dibromomethane	0.5	mg/kg	-	-	< 0.5	-
Dichlorodifluoromethane	0.5	mg/kg	-	-	< 0.5	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
lodomethane	0.5	mg/kg	-	-	< 0.5	-
Isopropyl benzene (Cumene)	0.5	mg/kg	-	-	< 0.5	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
Methylene Chloride	0.5	mg/kg	-	-	< 0.5	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Styrene	0.5	mg/kg	-	-	< 0.5	-
Tetrachloroethene	0.5	mg/kg	-	-	< 0.5	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
trans-1.2-Dichloroethene	0.5	mg/kg	-	-	< 0.5	-
trans-1.3-Dichloropropene	0.5	mg/kg	-	-	< 0.5	-
Trichloroethene	0.5	mg/kg	-	-	< 0.5	-
Trichlorofluoromethane	0.5	mg/kg	-	-	< 0.5	-
Vinyl chloride	0.5	mg/kg	-	-	< 0.5	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
Fluorobenzene (surr.)	1	%	-	-	92	-
4-Bromofluorobenzene (surr.)	1	%	-	-	95	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	78	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			SS9	SS10	BH1/0.1-0.2	SP1/0.3-0.35
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S16-Oc07107	S16-Oc07108	S16-Oc07109	S16-Oc07114
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 06, 2016	Oct 05, 2016
		Lloit				
Polycyclic Aromatic Hydrocarbons	LOIN	Offic				
Benzo(a)pyrene TEO (lower bound) *	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (needium bound) *	0.5	ma/ka	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (inculari bound) *	0.5	ma/ka	1.2	1.2	1.2	1.2
Acenaphthene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&i)fluoranthene ^{N07}	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a.h.i)pervlene	0.5	ma/ka	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	78	83	80	96
p-Terphenyl-d14 (surr.)	1	%	51	80	92	106
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
a-BHC	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Toxaphene	1	mg/kg	-	-	-	< 1
Dibutylchlorendate (surr.)	1	%	-	-	-	102
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	84
Total Recoverable Hydrocarbons - 2013 NEPM Fracti	ions					
TRH >C10-C16	50	mg/kg	< 50	78	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	300	300	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	240	< 100

Client Sample ID Sample Matrix			SS9 Soil	SS10 Soil	BH1/0.1-0.2 Soil	SP1/0.3-0.35 Soil
Eurofins mgt Sample No.			S16-Oc07107	S16-Oc07108	S16-Oc07109	S16-Oc07114
Date Sampled			Oct 05, 2016	Oct 05, 2016	Oct 06, 2016	Oct 05, 2016
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	74	< 2	< 2	2.7
Cadmium	0.4	mg/kg	1.2	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	110	35	26	20
Copper	5	mg/kg	180	94	25	15
Lead	5	mg/kg	1400	160	13	20
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	5	mg/kg	68	31	33	18
Zinc	5	mg/kg	1200	220	20	18
% Moisture	1	%	14	16	5.5	9.6

Client Sample ID			SP2/0.3-0.35	DS2
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			S16-Oc07115	S16-Oc08760
Date Sampled			Oct 05. 2016	Oct 05, 2016
	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions	Onit		
TRH C6-C9	20	ma/ka	< 20	-
TRH C10-C14	20	ma/ka	30	-
TRH C15-C28	50	ma/ka	< 50	-
TRH C29-C36	50	ma/ka	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-
BTEX				
Benzene	0.1	mg/kg	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	87	-
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-
TRH C6-C10	20	mg/kg	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-

Client Sample ID			SP2/0.3-0.35	DS2
Sample Matrix			Soil	Soil
Eurofins I mgt Sample No.			S16-Oc07115	S16-Oc08760
Date Sampled			Oct 05, 2016	Oct 05, 2016
Test/Reference	LOP	Linit	00000,2010	00100,2010
Polycyclic Aromatic Hydrocarbons	LOIN	Offic		
Dibenz(a b)anthracene	0.5	ma/ka	< 0.5	_
	0.5	mg/kg	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	ma/ka	< 0.5	_
Naphthalene	0.5	ma/ka	< 0.5	-
Phenanthrene	0.5	ma/ka	< 0.5	-
Pyrene	0.5	ma/ka	< 0.5	-
Total PAH*	0.5	ma/ka	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	93	-
p-Terphenyl-d14 (surr.)	1	%	98	-
Organochlorine Pesticides	·	·		
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
	0.2	mg/kg	< 0.2	< 0.2
Dibut deblesse dets (sum)	1	mg/kg	< 1	< 1
Tetrachloro m vulono (surr.)	1	~~~ 0/	90 77	01
Tetrachioro-m-xylene (surf.)	ione	70	11	01
	50	malka	< 50	
	100	mg/kg	< 100	-
	100	mg/kg	< 100	-
	100	піу/ку	< 100	-
Arsenic	2	ma/ka	53	21
Cadmium	0.4	mg/kg	<u> </u>	< 0.4
Chromium	5	ma/ka	20	56
Copper	5	ma/ka	12	29
l ead	5	ma/ka	20	59
Mercury	0.05	ma/ka	< 0.05	0.13
Nickel	5	ma/ka	< 5	7.0
Zinc	5	ma/ka	16	39
		<u> </u>	-	
% Moisture	1	%	7.8	10

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 13, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Oct 12, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 12, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 13, 2016	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Oct 13, 2016	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 13, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Sydney	Oct 12, 2016	28 Day
- Method: LTM-MET-3040_R0 TOTAL AND DISSOLVED METALS AND MERCURY IN WA	ATERS BY ICP-MS		
Volatile Organics	Sydney	Oct 12, 2016	7 Day
- Method: E016 Volatile Organic Compounds (VOC)			
Heavy Metals	Sydney	Oct 12, 2016	180 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Sydney	Oct 11, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

web : www.eurofins.com.au

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Bi

 Unit F3, Building F
 1/

 16 Mars Road
 M

 Lane Cove West NSW 2066
 PI

 Phone: +61 2 9900 8400
 N

 NATA # 1261 Site # 18217

Co Ad Pre	Company Name: Geo-Logix P/L Address: Bid Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: AUSTRAL PHASE 2							der N eport i ione: x:	lo.: #:	P 5 02 02	O154 18936 2 997 2 997	7 9 1722 9 1222	2 2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Pro	oject ID:	1601114B														Eurofins mgt Analytical Services Manager : Nibha Vaidya
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Svd	nev Laboratory	- NATA Site # 1	<u># 1204 & 142</u> 8217	.71		x	x	x	x	x	x	х	x	x	x	
Bris	bane Laboratory	y - NATA Site #	20794													
Exte	rnal Laboratory				-											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	C1	Oct 05, 2016		Soil	S16-Oc07063					Х	Х		Х			
2	S1/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07064			х								
3	S2/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07065			Х								
4	C2	Oct 05, 2016		Soil	S16-Oc07066					X	Х		Х			
5	S3/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07067			X								
6	S4/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07068			X								
7	C3	Oct 05, 2016		Soil	S16-Oc07069				<u> </u>	X	Х		X			
8	S5/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07070			X								
9	\$6/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07071			X								
10	C4	Oct 05, 2016		Soil	S16-Oc07072					Х	Х		Х			

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

 Sydney
 Brisb

 Unit F3, Building F
 1/21 3

 16 Mars Road
 Muran

 Lane Cove West NSW 2066
 Phone

 Phone : +61 2 9900 8400
 NATA

 NATA # 1261 Site # 18217
 H217

Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream StWarriewoodNSW 2102					Or Re Ph Fa	der N port i one: x:	o.: #:	P 5 02 02	O154 ⁻ 18936 2 9979 2 9979	7 5 9 1722 9 1222	2 2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Project Name Project ID:	AUSTRAL PHAS 1601114B	SE 2												Eurofins mgt Analytical Services Manager : Nibha Vaidya
	Asbestos Absence /Presence	CANCELLED	ногр	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9				
Sydney Labora	atory - NATA Site # 1821	7		x	x	x	x	x	х	х	x	x	x	
Brisbane Labo	ratory - NATA Site # 207	794												
External Labor	atory													
11 S7/0.0-0.1	5 Oct 05, 2016	Soil	S16-Oc07073			х								
12 S8/0.0-0.1	5 Oct 05, 2016	Soil	S16-Oc07074			Х								
13 C5	Oct 05, 2016	Soil	S16-Oc07075					Х	Х		Х			
14 S9/0.0-0.1	5 Oct 05, 2016	Soil	S16-Oc07076			Х								
15 S10/0.0-0.	.15 Oct 05, 2016	Soil	S16-Oc07077			х								
16 C6	Oct 05, 2016	Soil	S16-Oc07078					Х	Х		Х			
17 S11/0.0-0.	.15 Oct 05, 2016	Soil	S16-Oc07079			Х								
18 S12/0.0-0.	.15 Oct 05, 2016	Soil	S16-Oc07080			х								
19 C7	Oct 05, 2016	Soil	S16-Oc07081					х	х		х			
20 \$13/0.0-0.	.15 Oct 05, 2016	Soil	S16-Oc07082			х								
21 S14/0.0-0.	.15 Oct 05, 2016	Soil	S16-Oc07083			Х								
22 C8	Oct 05, 2016	Soil	S16-Oc07084					х	х		х			

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

 Sydney
 Brisb

 Unit F3, Building F
 1/21 3

 16 Mars Road
 Muran

 Lane Cove West NSW 2066
 Phone

 Phone : +61 2 9900 8400
 NATA

 NATA # 1261 Site # 18217
 H217

Co Ao	Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream StWarriewoodNSW 2102					Or Re Ph Fa	der N port i one: x:	o.: #:	P 5 02 02	O154 ⁻ 18936 2 9979 2 9979	7 9 1722 9 1222	2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Pr Pr	oject Name: oject ID:	AUSTRAL PHASE 2 1601114B													Eurofins mgt Analytical Services Manager : Nibha Vaidya
	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Svd	nev Laboratory -	- NATA Site # 18217	14271		x	x	x	x	x	х	х	х	х	x	-
Bris	bane Laboratory	/ - NATA Site # 20794													-
Exte	ernal Laboratory														
23	S15/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07085			Х								
24	S16/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07086			Х								
25	C9	Oct 05, 2016	Soil	S16-Oc07087					Х	Х		Х			
26	S17/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07088			Х								
27	S18/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07089			Х								
28	C10	Oct 05, 2016	Soil	S16-Oc07090					Х	Х		Х			
29	S19/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07091			Х								
30	S20/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07092			Х								
31	C11	Oct 05, 2016	Soil	S16-Oc07093					Х	Х		Х			
32	S21/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07094			Х								
33	S22/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07095			Х								
34	C12	Oct 05, 2016	Soil	S16-Oc07096					Х	Х		Х			

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Brisba

 Unit F3, Building F
 1/21 S

 16 Mars Road
 Murar

 Lane Cove West NSW 2066
 Phone

 Phone : +61 2 9900 8400
 NATA

 NATA # 1261 Site # 18217
 H217

Co Ad	Company Name:Geo-Logix P/LAddress:Bid Q2 Level 3, 2309/4 Daydream StWarriewoodNSW 2102						der N port # one: x:	o.: #:	P 5 02 02	O154 ⁻ 18936 2 9979 2 9979	7 9 1722 9 1222	2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Pro Pro	oject Name: oject ID:	AUSTRAL PHASE 2 1601114B													Eurofins mgt Analytical Services Manager : Nibha Vaidya
Melt	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						ногр	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Syd	ney Laboratory -	• NATA Site # 18217			х	х	х	х	Х	х	х	Х	х	х	
Bris	bane Laboratory	/ - NATA Site # 20794													
Exte	rnal Laboratory														
35	S23/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07097			Х								
36	S24/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07098			Х								
37	SS1	Oct 05, 2016	Soil	S16-Oc07099	Х							Х	Х		
38	SS2	Oct 05, 2016	Soil	S16-Oc07100	Х			Х				Х			
39	SS3	Oct 05, 2016	Soil	S16-Oc07101	х			х				Х			
40	SS4	Oct 05, 2016	Soil	S16-Oc07102	х			х				Х			
41	SS5	Oct 05, 2016	Soil	S16-Oc07103	Х			Х				Х			
42	SS6	Oct 05, 2016	Soil	S16-Oc07104	х						х	х			
43	SS7	Oct 05, 2016	Soil	S16-Oc07105	х						х	х			
44	SS8	Oct 05, 2016	Soil	S16-Oc07106	х							х	х		
45	SS9	Oct 05, 2016	Soil	S16-Oc07107	х							Х	Х		
46	SS10	Oct 05, 2016	Soil	S16-Oc07108	Х							Х	Х		

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Bit

 Unit F3, Building F
 1/

 16 Mars Road
 M

 Lane Cove West NSW 2066
 PI

 Phone : +61 2 9900 8400
 N

 NATA # 1261 Site # 18217
 N

Co Ad Pr	Company Name:Geo-Logix P/LAddress:Bid Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102Project Name:AUSTRAL PHASE 2						der N port # one: x:	0.: ¢:	P 5 02 02	O154 18936 2 997 2 997	7 5 9 1722 9 1222	2 2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Pr	oject ID:	1601114B													Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail							ногр	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271		X	X	N N	X	X	X	X	X	X	X	
Syd	ney Laboratory		8217		×	X	X	X	X	X	X	X	X	X	
Exte	mail aboratory	y - NATA Site #	20794												
47	BH1/0 1-0 2	Oct 06 2016	Soil	S16-Oc07109							х	х	х		
48	SS1/0.0-0.15	Oct 05, 2016	Other	S16-Oc07110	х										
49	S21/0.0-0.15	Oct 05, 2016	Other	S16-Oc07111	х										
50	DS2	Oct 05, 2016	Soil	S16-Oc07112		Х									
51	AC1/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07113	Х										
52	SP1/0.3-0.35	Oct 05, 2016	Soil	S16-Oc07114								Х		Х	
53	SP2/0.3-0.35	Oct 05, 2016	Soil	S16-Oc07115								Х		Х	
54	R1	Oct 05, 2016	Water	S16-Oc07116									х		
55	R2	Oct 05, 2016	Water	S16-Oc07117									х		
56	DS2	Oct 05, 2016	Soil	S16-Oc08760					Х	х		х			
Test	Counts				13	1	24	4	13	13	3	26	7	2	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1	1 1	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank		1				
втех	1					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank		1		1		
Volatile Organics					_	
1.1-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
1.1.1-Trichloroethane	mg/kg	< 0.5		0.5	Pass	
1.1.1.2- I etrachloroethane	mg/kg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
1.1.2.2- I etrachloroethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dibromoethane	mg/kg	< 0.5		0.5	Pass	
1.2-Dichlorobenzene	mg/kg	< 0.5		0.5	Pass	
1.2-Dichloroethane	mg/kg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
1.2.3- I richloropropane	mg/kg	< 0.5		0.5	Pass	
1.2.4- I rimethylbenzene	mg/kg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	<u> </u>
	mg/kg	< 0.5		0.5	Pass	<u> </u>
	mg/kg	< 0.5		0.5	Pass	
	mg/kg	< 0.5		0.5	Pass	
2-Propanone (Acetone)	mg/kg	< 5		5	Pass	
4-Chlorotoluene	mg/kg	< 0.5		0.5	Pass	
4-Methyl-2-pentanone (MIBK)	mg/kg	< 0.5		0.5	Pass	
Promohonzono	mg/kg	< 0.05		0.05	Pass	
Bromoshlaromothana	mg/kg	< 0.5		0.5	Pass	
Bromodiobleromethane	mg/kg	< 0.5		0.5	Pass	
Bromoform	mg/kg	< 0.5		0.5	Pass	
Bromomothano	mg/kg	< 0.5		0.5	Pass	
Carbon digulfido	mg/kg	< 0.5		0.5	Pass	
Carbon Tetrachloride	mg/kg	< 0.5		0.5	Dass	
Chlorobenzene	mg/kg	< 0.5		0.5	Pass	
Chloroethane	mg/kg	< 0.5		0.5	Pass	
Chloroform	mg/kg	< 0.5		0.5	Pass	
Chloromethane	ma/ka	< 0.5		0.5	Page	
cis-1 2-Dichloroethene	ma/ka	< 0.5		0.5	Page	
cis-1 3-Dichloropropene	ma/ka	< 0.5		0.5	Page	
Dibromochloromethane	ma/ka	< 0.5		0.5	Pass	
Dibromomethane	ma/ka	< 0.5		0.5	Pass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Dichlorodifluoromethane	mg/kg	< 0.5		0.5	Pass	
lodomethane	mg/kg	< 0.5		0.5	Pass	
Isopropyl benzene (Cumene)	mg/kg	< 0.5		0.5	Pass	
Methylene Chloride	mg/kg	< 0.5		0.5	Pass	
Styrene	mg/kg	< 0.5		0.5	Pass	
Tetrachloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.2-Dichloroethene	mg/kg	< 0.5		0.5	Pass	
trans-1.3-Dichloropropene	mg/kg	< 0.5		0.5	Pass	
Trichloroethene	mg/kg	< 0.5		0.5	Pass	
Trichlorofluoromethane	mg/kg	< 0.5		0.5	Pass	
Vinyl chloride	mg/kg	< 0.5		0.5	Pass	
Method Blank				-1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank						
Organochlorine Pesticides	"				_	
Chlordanes - I otal	mg/kg	< 0.1		0.1	Pass	
4.4-DDD	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05		0.05	Pass	
	mg/кg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05		0.05	Pass	
	mg/kg	< 0.05		0.05	Pase	
Endrin	ma/ka	< 0.05		0.05	Page	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pase	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	ma/ka	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
		- 0.00	II	0.00	1 455	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Methoxychlor	mg/kg	< 0.2		0.2	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank						
Heavy Metals	-					
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.05		0.05	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery		1	1	I		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	%	101		70-130	Pass	
TRH C10-C14	%	87		70-130	Pass	
LCS - % Recovery		1	1	I		
BTEX						
Benzene	%	90		70-130	Pass	
Toluene	%	92		70-130	Pass	
Ethylbenzene	%	92		70-130	Pass	
m&p-Xylenes	%	91		70-130	Pass	
o-Xylene	%	91		70-130	Pass	
Xylenes - Total	%	91		70-130	Pass	
LCS - % Recovery			Г I			
Volatile Organics						
1.1-Dichloroethane	%	75		70-130	Pass	
1.1-Dichloroethene	%	80		70-130	Pass	
1.1.1-Trichloroethane	%	88		70-130	Pass	
1.1.1.2-Tetrachloroethane	%	96		70-130	Pass	
1.1.2-Trichloroethane	%	87		70-130	Pass	
1.1.2.2-Tetrachloroethane	%	75		70-130	Pass	
1.2-Dibromoethane	%	83		70-130	Pass	
1.2-Dichlorobenzene	%	85		70-130	Pass	
1.2-Dichloroethane	%	87		70-130	Pass	
1.2-Dichloropropane	%	109		70-130	Pass	
1.2.3- I richloropropane	%	79		70-130	Pass	
1.2.4-I rimethylbenzene	%	86		70-130	Pass	
	%	87		70-130	Pass	
	%	92		70-130	Pass	
	<u>%</u>	86		70-130	Pass	
	%	86		70-130	Pass	
	%	104		70-130	Pass	
2-Propanone (Acetone)	<u>%</u>	14		70-130	Pass	
	<u>%</u>	00		70-130	Pass	
4-wearly-2-pentanone (MIBK)	<u>%</u>	07		70-130	Pass	
Rigi chioride	~~ 0/	0/		70-130	Pass	
Bromobleromethane	70 0/	114		70 120	Pass	
Diomochiolomethane	70	114		70-130	rass	

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Bromodichloromethane	%	93		70-130	Pass	
Bromoform	%	73		70-130	Pass	
Bromomethane	%	78		70-130	Pass	
Carbon disulfide	%	73		70-130	Pass	
Carbon Tetrachloride	%	84		70-130	Pass	
Chlorobenzene	%	91		70-130	Pass	
Chloroethane	%	79		70-130	Pass	
Chloroform	%	93		70-130	Pass	
Chloromethane	%	102		70-130	Pass	
cis-1.2-Dichloroethene	%	93		70-130	Pass	
cis-1.3-Dichloropropene	%	84		70-130	Pass	
Dibromochloromethane	%	81		70-130	Pass	
Dibromomethane	%	91		70-130	Pass	
Dichlorodifluoromethane	%	89		70-130	Pass	
lodomethane	%	74		70-130	Pass	
Isopropyl benzene (Cumene)	%	83		70-130	Pass	
Methylene Chloride	%	89		70-130	Pass	
Styrene	%	83		70-130	Pass	
Tetrachloroethene	%	79		70-130	Pass	
trans-1 2-Dichloroethene	%	73		70-130	Pass	
trans-1 3-Dichloropropene	%	96		70-130	Pass	
Trichloroethene	%	95		70-130	Pass	
Trichlorofluoromethane	70 0/_	90		70-130	Pass	
Vinyl chloride	70 0/_	84		70-130	Pass	
	70	04		70-130	1 435	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Nanhthalene	0/_	70		70-130	Pass	
	70 0/_	0/		70-130	Pass	
	70	34		70-130	1 435	
Bolycyclic Aromatic Hydrocarbons						
	0/_	112		70-130	Pass	
	70 0/_	107		70-130	Pass	
Anthracono	70 0/.	107		70-130	Pass	
Ronz(a)anthracono	/0 0/.	114		70-130	Pass	
Bonzo(a)autimacene	/0 0/.	107		70-130	Pass	
Benzo(a)pyrene	70 0/	72		70-130	Pass	
	70 0/	00		70-130	Pass	
Benzo((g.fi.i)perylene	70 0/	00		70-130	Pass	
Chrysono	70 0/	120		70-130	Pass	
	70 0/	120		70-130	Pass	
	70 0/	04		70-130	Pass	
	% 0/	105		70-130	Pass	
	70 0/	105		70-130	Pass	
Indeno(1.2.3-cd)pyrene	70 0/	91		70-130	Pass	
Naphthalene	%	107		70-130	Pass	
Prenantnrene	%	94		70-130	Pass	
	%	107		70-130	Pass	
Crannochlering Postisides						
Organochiorine Pesticides	0/	04		70.400	Der	
	<u>%</u>	91		70-130	Pass	
	<u>%</u>	92		70-130	Pass	
	<u>%</u>	90	<u> </u>	70-130	Pass	
	<u>%</u>	90		70-130	Pass	
	%	8/	<u> </u>	70-130	Pass	
	70	00	1 1	10-130	rass	

🛟 eurofins

Test			Units	Result 1		Acceptance	Pass Limits	Qualifying
h-BHC			%	83		70-130	Pass	0000
d-BHC			%	117		70-130	Pass	
Dieldrin			%	92		70-130	Pass	
Endosulfan I			%	91		70-130	Pass	
Endosulfan II			%	90		70-130	Pass	
Endosulfan sulphate			%	93		70-130	Pass	
Endrin			%	96		70-130	Pass	
Endrin aldehvde			%	104		70-130	Pass	
Endrin ketone			%	91		70-130	Pass	
g-BHC (Lindane)			%	88		70-130	Pass	
Heptachlor			%	104		70-130	Pass	
Heptachlor epoxide			%	93		70-130	Pass	
Hexachlorobenzene			%	85		70-130	Pass	
Methoxychlor			%	86		70-130	Pass	
Toxaphene			%	84		70-130	Pass	
LCS - % Recovery			,,,			10 100	1 400	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
TRH >C10-C16			%	94		70-130	Pass	
LCS - % Recovery			,,,			10 100	1 400	
Heavy Metals								
Arsenic			%	92		70-130	Pass	
Cadmium			%	98		70-130	Pass	
Chromium			%	101		70-130	Pass	
Copper			%	102		70-130	Pass	
Lead			%	95		70-130	Pass	
Mercury			%	104		70-130	Pass	
Nickel			%	96		70-130	Pass	
			,,					
Zinc	Lab Sample ID QA			82		70-130	Pass	
Zinc Test	Lab Sample ID	QA Source	% Units	82 Result 1		70-130 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery	Lab Sample ID	QA Source	% Units	82 Result 1		70-130 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals	Lab Sample ID	QA Source	% Units	82 Result 1 Result 1		70-130 Acceptance Limits	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury	Lab Sample ID	QA Source	% Units	82 Result 1 Result 1 97		70-130 Acceptance Limits 70-130	Pass Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery	Lab Sample ID S16-Oc06920	QA Source	% Units %	82 Result 1 Result 1 97		70-130 Acceptance Limits 70-130 70-130	Pass Pass Limits Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals	Lab Sample ID S16-Oc06920	QA Source	% Units %	82 Result 1 Result 1 97 Result 1		70-130 Acceptance Limits 70-130 70-130	Pass Pass Limits Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium	Lab Sample ID S16-Oc06920 S16-Oc08460	QA Source NCP	% Units %	82 Result 1 Result 1 97 Result 1 90		70-130 Acceptance Limits 70-130 70-130	Pass Limits Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery	Lab Sample ID S16-Oc06920 S16-Oc08460	QA Source NCP	% Units % %	82 Result 1 Result 1 97 Result 1 90		70-130 Acceptance Limits 70-130 70-130	Pass Pass Limits Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides	Lab Sample ID S16-Oc06920 S16-Oc08460	QA Source NCP	% Units % %	82 Result 1 97 Result 1 90 Result 1		70-130 Acceptance Limits 70-130 70-130 70-130	Pass Limits Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total	Lab Sample ID S16-Oc06920 S16-Oc08460 S16-Oc07081	QA Source NCP NCP	% Units % % %	82 Result 1 97 Result 1 90 Result 1 93		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	Lab Sample ID S16-Oc06920 S16-Oc08460 S16-Oc07081 S16-Oc07081	QA Source NCP NCP	% Units % % %	82 Result 1 97 Result 1 90 Result 1 93 95		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	Lab Sample ID S16-Oc06920 S16-Oc08460 S16-Oc07081 S16-Oc07081 S16-Oc07081	QA Source NCP NCP	% Units % % % %	82 Result 1 97 Result 1 90 Result 1 93 95 92		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc08460 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081	QA Source NCP NCP	% Units % % % % %	82 Result 1 97 Result 1 90 Result 1 93 95 92 93		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc08460 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081	QA Source NCP NCP CP CP CP CP CP CP	% Units % % % % % %	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDT a-BHC Aldrin	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc08460 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081	QA Source NCP NCP CP CP CP CP CP CP CP	% Units % % % % % % %	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83		70-130 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDT a-BHC Aldrin b-BHC	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc08460 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081	QA Source	% Units % % % % % % % % %	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83 78		70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081 S16-Oc07081	QA Source	% Units	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83 78 117		70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc07081	QA Source	% Units %	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94		70-130 Acceptance Limits 70-130	Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc07081	QA Source	% Units %	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91		70-130 Acceptance Limits 70-130	Pass Limits	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II	Lab Sample ID Lab Sample ID S16-Oc06920 S16-Oc08460 S16-Oc07081	QA Source	% Units %	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91 91		70-130 Acceptance Limits 70-130 70	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate	Lab Sample ID Lab Sample ID S16-Oc06920 S16-Oc08460 S16-Oc07081	QA Source	% Units % <td>82 Result 1 97 Result 1 90 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91 91 90</td> <td></td> <td>70-130 Acceptance Limits 70-130 70</td> <td>Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa</td> <td>Qualifying Code</td>	82 Result 1 97 Result 1 90 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91 91 90		70-130 Acceptance Limits 70-130 70	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulphate Endrin	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc07081	QA Source	% Units % <td>82 Result 1 97 Result 1 90 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91 91 90 100</td> <td></td> <td>70-130 Acceptance Limits 70-130</td> <td>Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa</td> <td>Qualifying Code</td>	82 Result 1 97 Result 1 90 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91 91 90 100		70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc07081	QA Source	% Units % <td>82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91 91 91 90 100 75</td> <td>Image: set of the set of th</td> <td>70-130 Acceptance Limits 70-130</td> <td>Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa</td> <td>Qualifying Code</td>	82 Result 1 97 Result 1 90 Result 1 93 95 92 93 85 83 78 117 94 91 91 91 90 100 75	Image: set of the set of th	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan sulphate Endrin aldehyde Endrin ketone	Lab Sample ID S16-Oc06920 S16-Oc06920 S16-Oc07081 S16	QA Source NCP NCP CP CP CP CP CP CP CP CP CP CP CP CP	% Units % <td>82 Result 1 97 Result 1 90 Result 1 90 85 92 93 85 83 78 117 94 91 91 90 100 75 102</td> <td></td> <td>70-130 Acceptance Limits 70-130</td> <td>Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa</td> <td>Qualifying Code</td>	82 Result 1 97 Result 1 90 Result 1 90 85 92 93 85 83 78 117 94 91 91 90 100 75 102		70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Zinc Test Spike - % Recovery Heavy Metals Mercury Spike - % Recovery Heavy Metals Cadmium Spike - % Recovery Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC Aldrin b-BHC d-BHC Dieldrin Endosulfan I Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane)	Lab Sample ID Lab Sample ID Lab Sample ID Lab S16-Oc06920 S16-Oc07081	QA Source	% Units % <td>82 Result 1 97 Result 1 90 Result 1 90 8 93 95 92 93 85 83 78 117 94 91 91 91 90 100 75 102 84</td> <td>Image: Control of the sector of the secto</td> <td>70-130 Acceptance Limits 70-130</td> <td>Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa</td> <td>Qualifying Code</td>	82 Result 1 97 Result 1 90 Result 1 90 8 93 95 92 93 85 83 78 117 94 91 91 91 90 100 75 102 84	Image: Control of the sector of the secto	70-130 Acceptance Limits 70-130	Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code

🛟 eurofins

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Heptachlor epoxide	S16-Oc07081	CP	%	95			70-130	Pass	
Hexachlorobenzene	S16-Oc07081	CP	%	77			70-130	Pass	
Methoxychlor	S16-Oc07081	СР	%	98			70-130	Pass	
Spike - % Recovery						-			
Heavy Metals				Result 1					
Arsenic	S16-Oc07084	CP	%	103			70-130	Pass	
Chromium	S16-Oc07084	CP	%	98			70-130	Pass	
Copper	S16-Oc07084	CP	%	83			70-130	Pass	
Lead	S16-Oc07084	CP	%	106			70-130	Pass	
Nickel	S16-Oc07084	CP	%	88			70-130	Pass	
Zinc	S16-Oc07084	CP	%	95			70-130	Pass	
Spike - % Recovery				1		-			
Polycyclic Aromatic Hydrocarbons	i			Result 1					
Acenaphthene	S16-Oc07472	NCP	%	114			70-130	Pass	
Acenaphthylene	S16-Oc07472	NCP	%	108			70-130	Pass	
Anthracene	S16-Oc07472	NCP	%	110			70-130	Pass	
Benz(a)anthracene	S16-Oc07472	NCP	%	117			70-130	Pass	
Benzo(a)pyrene	S16-Oc07472	NCP	%	121			70-130	Pass	
Benzo(b&j)fluoranthene	S16-Oc07472	NCP	%	107			70-130	Pass	
Benzo(g.h.i)perylene	S16-Oc07472	NCP	%	83			70-130	Pass	
Benzo(k)fluoranthene	S16-Oc07472	NCP	%	123			70-130	Pass	
Chrysene	S16-Oc07472	NCP	%	102			70-130	Pass	
Dibenz(a.h)anthracene	S16-Oc07472	NCP	%	79			70-130	Pass	
Fluoranthene	S16-Oc07472	NCP	%	111			70-130	Pass	
Fluorene	S16-Oc07472	NCP	%	104			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S16-Oc07472	NCP	%	82			70-130	Pass	
Naphthalene	S16-Oc07472	NCP	%	111			70-130	Pass	
Phenanthrene	S16-Oc07472	NCP	%	95			70-130	Pass	
Pyrene	S16-Oc07472	NCP	%	123			70-130	Pass	
Spike - % Recovery					-				
Volatile Organics				Result 1					
1.1-Dichloroethane	S16-Oc03157	NCP	%	83			70-130	Pass	
1.1-Dichloroethene	S16-Oc03157	NCP	%	70			70-130	Pass	
1.1.1-Trichloroethane	S16-Oc03157	NCP	%	102			70-130	Pass	
1.1.1.2-Tetrachloroethane	S16-Oc03157	NCP	%	106			70-130	Pass	
1.1.2-Trichloroethane	S16-Oc03157	NCP	%	100			70-130	Pass	
1.1.2.2-Tetrachloroethane	S16-Oc03157	NCP	%	83			70-130	Pass	
1.2-Dibromoethane	S16-Oc03157	NCP	%	99			70-130	Pass	
1.2-Dichlorobenzene	S16-Oc03157	NCP	%	110			70-130	Pass	
1.2-Dichloroethane	S16-Oc03157	NCP	%	87			70-130	Pass	
1.2-Dichloropropane	S16-Oc03157	NCP	%	116			70-130	Pass	
1.2.3-Trichloropropane	S16-Oc03157	NCP	%	112			70-130	Pass	
1.2.4-Trimethylbenzene	S16-Oc03157	NCP	%	112			70-130	Pass	
1.3-Dichlorobenzene	S16-Oc03157	NCP	%	112			70-130	Pass	
1.3-Dichloropropane	S16-Oc03157	NCP	%	108			70-130	Pass	
1.3.5- I rimethylbenzene	S16-Oc03157	NCP	%	111			70-130	Pass	
1.4-Dichlorobenzene	S16-Oc03157	NCP	%	110			70-130	Pass	
2-Propanone (Acetone)	S16-Oc03157	NCP	%	75			70-130	Pass	
4-Uniorotoluene	S16-Uc03157	NCP	%	111			70-130	Pass	
4-Ivietnyi-2-pentanone (MIBK)	S16-UC03157	NCP	%	/8			70-130	Pass	
	S16-Uc03157	NCP	%	/1			70-130	Pass	
Bromobenzene	S16-UC03157	NCP	%	119			70-130	Pass	
Bromochloromethane	S16-Uc03157	NCP	%	080			70-130	Pass	
Bromodichloromethane	S16-Oc03157	NCP	%	97			70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance	Pass Limits	Qualifying
Bromoform	S16-Oc03157	NCP	%	82			70-130	Pass	
Bromomethane	S16-Oc03157	NCP	%	88			70-130	Pass	
Carbon Tetrachloride	S16-Oc03157	NCP	%	97			70-130	Pass	
Chlorobenzene	S16-Oc03157	NCP	%	107			70-130	Pass	
Chloroethane	S16-Oc03157	NCP	%	74			70-130	Pass	
Chloroform	S16-Oc03157	NCP	%	83			70-130	Pass	
Chloromethane	S16-Oc03157	NCP		122			70-130	Pass	
cis-1 2-Dichloroethene	S16-Oc03157	NCP	70 0/	70			70-130	Pass	
cis-1.2-Dichloropropene	S16-Oc03157	NCP	70 0/	01			70-130	Pass	
Dibromochloromethane	S16-Oc03157	NCP	%	90			70-130	Pass	
Dibromomethane	S16-Oc03157	NCP	%	00			70-130	Pass	
Dichlorodifluoromethane	S16-Oc03157	NCP	<u> </u>	03			70-130	Dass	
	S16 Oc03157	NCP	0/	106			70-130	Pass	
Mothylong Chloridg	S16 Oc03157	NCP	0/	02			70-130	Pass	
Styropo	S16 Oc03157		/0 0/.	102			70-130	Pass	
Totrachloroothopo	S16 Oc03157		/0 0/.	04			70-130	Pass	
trans 1.2 Dichloroothono	S16 Oc03157		/0 0/.	72			70-130	Pass	
	S16 0:003157		/0	07			70-130	Pass	
Triable reather a	S16-0003157	NCP	% 0/	97			70-130	Pass	
Trichlandfuaramathana	S16-0003157	NOP	<u>%</u>	74			70-130	Pass	
	S16-0c03157	NCP	<u>%</u>	74			70-130	Pass	
	516-0003157	NCP	%	95			70-130	Pass	
Spike - % Recovery		iene		Deput 1					
Total Recoverable Hydrocarbons -			0/	Result			70.400	Dees	
	516-0007114	CP	%	111			70-130	Pass	
Spike - % Recovery				Devilia				_	
BIEX	040.0.07444	0.0	0/	Result			70.400	Dese	
Benzene	S16-Oc07114		%	104			70-130	Pass	
Toluene	S16-Oc07114		%	107			70-130	Pass	
	S16-0c07114		% 0/	107			70-130	Pass	
m&p-Xylenes	S16-0c07114		%	105			70-130	Pass	
0-Aylene	S16-0c07114		% 0/	105			70-130	Pass	
Spiles - Total	516-0007114	CP	70	105			70-130	Pass	
Spike - % Recovery	2012 NEDM Erect	iene		Deput 1					
Norbith class			0/				70.400	Dees	
	S16-0c07114		<u>%</u>	121			70-130	Pass	
	516-0007114	CP	%	102			70-130	Pass	
Spike - % Recovery		iene		Deput 1			1		
			0/				70 120	Booo	
Spike % Pessyary	310-0007115	UF_	70	00			70-130	Fass	
Total Pacovorable Hydrocarbons -	2012 NEPM Eract	ione		Recult 1					
			0/_	84			70-130	Pass	
	310-0007113		/0	04				Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Oc07063	СР	%	8.3	8.5	3.0	30%	Pass	
Duplicate				-			1		
Organochlorine Pesticides	·			Result 1	Result 2	RPD			
Chlordanes - Total	S16-Oc07078	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S16-Oc07078	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S16-Oc07078	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S16-Oc07078	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S16-Oc07078	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
b-BHC	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S16-Oc07078	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S16-Oc07078	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Toxaphene	S16-Oc07078	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc07081	CP	mg/kg	7.5	8.5	13	30%	Pass	
Cadmium	S16-Oc07081	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc07081	CP	mg/kg	40	39	3.0	30%	Pass	
Copper	S16-Oc07081	CP	mg/kg	16	15	5.0	30%	Pass	
Lead	S16-Oc07081	CP	mg/kg	34	34	1.0	30%	Pass	
Mercury	S16-Oc07081	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S16-Oc07081	CP	mg/kg	8.9	7.3	19	30%	Pass	
Zinc	S16-Oc07081	CP	mg/kg	22	20	10	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	S16-Oc07093	CP	%	10	10	1.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S16-Oc07103	CP	mg/kg	9.9	12	17	30%	Pass	
Cadmium	S16-Oc07103	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S16-Oc07103	CP	mg/kg	31	38	19	30%	Pass	
Copper	S16-Oc07103	CP	mg/kg	38	37	3.0	30%	Pass	
Lead	S16-Oc07103	CP	mg/kg	64	66	2.0	30%	Pass	
Mercury	S16-Oc07103	CP	mg/kg	0.06	0.07	11	30%	Pass	
	S16-Oc07103	CP	mg/kg	6.2	6.9	11	30%	Pass	
	S16-Oc07103	СР	mg/kg	81	85	5.0	30%	Pass	
Duplicate				Desult 1	Desult 0				
9/ Majatura	S16 0:07107		0/	Result 1	Result 2	42 42	200/	Deee	
% Moisture	516-0007107	CP	70	14	12	12	30%	Pass	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Oc07109	CP	ma/ka	~ 20	< 20	<1	30%	Pass	
Dunlicate	310-0007103	01	шу/ку	< 20	< 20		50 /0	1 835	
BTEX				Result 1	Result 2	RPD			
Benzene	S16-Oc07109	CP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S16-Oc07109	CP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S16-Oc07109	C.P	ma/ka	< 0.1	< 0.1	<u>د</u> 1	30%	Pass	
m&p-Xylenes	S16-Oc07109	CP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
o-Xvlene	S16-Oc07109	CP	ma/ka	< 0.1	< 0.1	<1	30%	Pass	
Xvlenes - Total	S16-Oc07109	CP	ma/ka	< 0.3	< 0.3	<1	30%	Pass	
,	2.2.0007100	. .				••	20,0		

Duplicate				-					
Volatile Organics				Result 1	Result 2	RPD			
1.1-Dichloroethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1-Dichloroethene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1-Trichloroethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2-Trichloroethane	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dibromoethane	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichlorobenzene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloroethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2-Dichloropropane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.3-Trichloropropane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.2.4-Trimethylbenzene	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichlorobenzene	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3-Dichloropropane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.3.5-Trimethylbenzene	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
1.4-Dichlorobenzene	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Butanone (MEK)	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2-Propanone (Acetone)	S16-Oc07109	СР	mg/kg	< 5	< 5	<1	30%	Pass	
4-Chlorotoluene	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
4-Methyl-2-pentanone (MIBK)	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Allyl chloride	S16-Oc07109	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Bromobenzene	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromochloromethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromodichloromethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromoform	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Bromomethane	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon disulfide	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Carbon Tetrachloride	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chlorobenzene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloroform	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chloromethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.2-Dichloroethene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
cis-1.3-Dichloropropene	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromochloromethane	S16-Oc07109	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibromomethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dichlorodifluoromethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
lodomethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Isopropyl benzene (Cumene)	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Methylene Chloride	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Styrene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Tetrachloroethene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.2-Dichloroethene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
trans-1.3-Dichloropropene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichloroethene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Trichlorofluoromethane	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Vinyl chloride	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S16-Oc07109	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S16-Oc07109	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S16-Oc07114	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S16-Oc07114	СР	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S16-Oc07114	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					Result 2	RPD			
TRH >C10-C16	S16-Oc07114	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S16-Oc07114	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S16-Oc07114	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons				Result 1	Result 2	RPD			
Acenaphthene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S16-Oc07115	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

This report has been revised to amend Sample ID for sample S16-Oc07111.

N/A
Yes
No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles N01 (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya	Analytical Services Manager
Rhys Thomas	Senior Analyst-Asbestos (NSW)
Ryan Hamilton	Senior Analyst-Inorganic (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Geo-Logix P/L Bld Q2 Level 3, 23(Warriewood NSW 2102	09/4 Daydream St
Attention: Report Project Name Project ID Received Date Date Reported	Tim Gunns 518936-V2-AID AUSTRAL PHASE 2 1601114B Oct 07, 2016 Oct 17, 2016
Methodology:	
Asbestos ID	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. Bulk samples include building materials, soils and ores.
Subsampling Soil Samples	The whole sample submitted is first dried and then sieved through a 10mm sieve followed by a 2mm sieve. All fibrous matter viz greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) Iron ores - Sampling and Sample preparation procedures is employed. Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated and where required interfering organic fibres or matter may be removed by treating the sample for several hours at a temperature not exceeding $400 \pm 30^{\circ}$ C. The resultant material is then ground and examined in accordance with AS 4964-2004.
Limit of Reporting	The nominal detection limit of the AS4964 method is around 0.01%. The examination of large sample sizes (at least 500 ml is recommended) may improve the likelihood of identifying asbestos material in the greater than 2 mm fraction. The NEPM screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres. NOTE: NATA News, September 2011 – page 34, states, "Weighing of fibres is problematic and can lead to loss of fibres and potential exposure for laboratory analysts. To request laboratories to report information which is outside the scope of AS 4964-2004 and the scope of their accreditation is misleading and is most unwise" therefore such values reported are outside the scope of Eurofins mgt NATA accreditation as designated by an asterisk.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name	AUSTRAL PHASE 2
Project ID	1601114B
Date Sampled	Oct 05, 2016
Report	518936-V2-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS1	16-Oc07099	Oct 05, 2016	Approximate Sample 26g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS2	16-Oc07100	Oct 05, 2016	Approximate Sample 63g Sample consisted of: Brown coarse grain soil and rocks	Chrysotile, amosite and crocidolite asbestos detected in the form of loose fibre bundles. Approximate raw weight of asbestos = 0.0038g* Total estimated asbestos content in the sample = 0.0036g* Organic fibre detected. No respirable fibres detected.
SS3	16-Oc07101	Oct 05, 2016	Approximate Sample 51g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS4	16-Oc07102	Oct 05, 2016	Approximate Sample 56g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS5	16-Oc07103	Oct 05, 2016	Approximate Sample 50g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS6	16-Oc07104	Oct 05, 2016	Approximate Sample 82g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS7	16-Oc07105	Oct 05, 2016	Approximate Sample 69g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS8	16-Oc07106	Oct 05, 2016	Approximate Sample 21g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS9	16-Oc07107	Oct 05, 2016	Approximate Sample 31g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025–Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS10	16-Oc07108	Oct 05, 2016	Approximate Sample 26g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.
SS1/0.0-0.15	16-Oc07110	Oct 05, 2016	Approximate Sample 25g / 150x40x3mm Sample consisted of: Grey compressed cement	No asbestos detected.
S21/0.0-0.15	16-Oc07111	Oct 05, 2016	Approximate Sample 2g / 20x20x2mm Sample consisted of: Grey fibre cement material	Chrysotile and amosite asbestos detected.
AC1/0.0-0.15	16-Oc07113	Oct 05, 2016	Approximate Sample 46g Sample consisted of: Brown coarse grain soil and rocks	No asbestos detected. Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Asbestos - LTM-ASB-8020 Testing SiteExtractedHolding TimeSydneyOct 10, 2016Indefinite

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

-																
Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102						Or Re Pr Fa	Order No.: Report #: Phone: Fax:		P 5 0	PO1547 518936 02 9979 1722 02 9979 1222					Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns	
Project Name:AUSTRAL PHASE 2Project ID:1601114B																
							-	-		-						Eurofins mgt Analytical Services Manager : Nibha Vaidya
		Sa	mple Detail			Asbestos Absence /Presence	CANCELLED	HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Mell	bourne Laborato	ory - NATA Site	# 1254 & 142	271												
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х	Х	Х	Х	х	Х	х	Х	Х	
Bris	bane Laborator	y - NATA Site #	20794													
Exte	ernal Laboratory	/														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	C1	Oct 05, 2016		Soil	S16-Oc07063					Х	Х		X			
2	S1/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07064			X								
3	S2/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07065			X								
4	C2	Oct 05, 2016		Soil	S16-Oc07066					Х	Х		X			
5	S3/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07067			X		<u> </u>						
6	S4/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07068	<u> </u>		X		<u> </u>						
7	C3	Oct 05, 2016		Soil	S16-Oc07069				1	X	Х		X			
8	S5/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07070			X	1	<u> </u>						
9	S6/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07071			X		<u> </u>						
10	C4	Oct 05, 2016		Soil	S16-Oc07072					X	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: AUSTRAL PHASE 2 Project ID: 1601114B						Or Re Ph Fa	der N eport : ione: ix:	lo.: #:	P 5 0: 0:	O154 18936 2 997 2 997	7 5 9 172 9 122	2 2			Eurofi	Received: Due: Priority: Contact Na ns mɑt Anal	me: lytical S	Oct 7, 2016 5:25 PM Oct 14, 2016 5 Day Tim Gunns Services Manager : Nibha Vaidva
	Sample Detail					CANCELLED	HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Me	bourne Laborate	ory - NATA Site #	1254 & 14271															
Syc	dney Laboratory	- NATA Site # 182	217		X	X	X	X	X	X	X	X	Х	Х				
Bri	sbane Laborator	y - NATA Site # 2	0794															
Ext	ernal Laboratory	Oct 05, 2016	Coil	S16 0:07072	-													
12	S7/0.0-0.15	Oct 05, 2016	Soil	S16-0c07073														
13	C5	Oct 05, 2016	Soil	S16-Oc07074					x	x		x						
14	S9/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07076			X											
15	S10/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07077			х											
16	C6	Oct 05, 2016	Soil	S16-Oc07078					х	Х		х						
17	S11/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07079			Х											
18	S12/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07080			Х											
19	C7	Oct 05, 2016	Soil	S16-Oc07081					Х	Х		Х						
20	S13/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07082			Х											
21	S14/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07083			Х											
22	C8	Oct 05, 2016	Soil	S16-Oc07084					Х	Х		X						

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Address:	Impany Name: Geo-Logix P/L Iress: Bid Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102					der N eport a ione: x:	lo.: #:	P 5 02	O154 18936 2 997 2 997	7 5 9 172 9 122	2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Project Name: Project ID:	AUSTRAL PHASE 1601114B	2												Furofins mot Analytical Services Manager · Nibba Vaidy
	Asbestos Absence /Presence	CANCELLED	НОГД	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9				
Melbourne Laborat	ory - NATA Site # 1254	4 & 14271												
Sydney Laboratory	- NATA Site # 18217			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Brisbane Laborato	ry - NATA Site # 20794													-
External Laboratory	y		1											-
23 S15/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07085			X								-
24 S16/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07086			X			~					-
25 C9	Oct 05, 2016	Soil	S16-Oc07087			X		X	X		X			-
26 517/0.0-0.15	Oct 05, 2016	Soli	S16-Oc07088											-
27 518/0.0-0.15	Oct 05, 2016	Soll	S16-0c07089			^		v	v					-
20 \$10/0.0.0.15	Oct 05, 2016	Soil	S16 Oc07090			x					⊢^			-
30 \$20/0 0-0 15	Oct 05, 2016	Soil	S16-Oc07091	1		X								4
31 C11	Oct 05, 2016	Soil	S16-Oc07092	1				x	x		x			1
32 \$21/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07094	1		x								-
33 S22/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07095	1		x								1
34 C12	Oct 05, 2016	Soil	S16-Oc07096	1				x	х		x			1

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ao Pr	Company Name: Geo-Logix P/L Address: Bid Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: AUSTRAL PHASE 2 Design ID 4004141D						Order No.:PO1547Report #:518936Phone:02 9979 1722Fax:02 9979 1222									Received: Due: Priority: Contact Name:	Oct 7, 2016 5:25 PM Oct 14, 2016 5 Day Tim Gunns
Pr	oject ID:											Eurofine	s mgt Analytical	Services Manager : Nibha Vaidya			
		Asbestos Absence /Presence	CANCELLED	HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9						
Mel	bourne Laborato	Dry - NATA Site # 12	254 & 14271		v			v	v	v	v		v	v			
Bris	shane Laboratory	- NATA Site # 1621	794		^			^			^			^			
Exte	ernal Laboratory	y - NATA Olic # 201	54														
35	S23/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07097			x										
36	S24/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07098			Х										
37	SS1	Oct 05, 2016	Soil	S16-Oc07099	Х							Х	Х				
38	SS2	Oct 05, 2016	Soil	S16-Oc07100	Х			Х				Х					
39	SS3	Oct 05, 2016	Soil	S16-Oc07101	Х			Х				х					
40	SS4	Oct 05, 2016	Soil	S16-Oc07102	Х			Х				Х					
41	SS5	Oct 05, 2016	Soil	S16-Oc07103	Х			Х				Х					
42	SS6	Oct 05, 2016	Soil	S16-Oc07104	Х						Х	Х					
43	SS7	Oct 05, 2016	Soil	S16-Oc07105	Х						Х	Х					
44	SS8	Oct 05, 2016	Soil	S16-Oc07106	Х	 						X	Х				
45	SS9	Oct 05, 2016	Soil	S16-Oc07107	Х	<u> </u>						Х	Х				
46	SS10	Oct 05, 2016	Soil	S16-Oc07108	Х							X	Х				

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261

Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Co Ao Pr Pr	Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream StWarriewood NSW 2102Project Name:AUSTRAL PHASE 2Project ID:1601114B							lo.: #:	P 5 [:] 02 02	O154 18936 2 997 2 997	7 5 9 172: 9 122:	2 2			Received:Oct 7, 2016 5:25 PMDue:Oct 14, 2016Priority:5 DayContact Name:Tim Gunns
		Asbestos Absence /Presence	CANCELLED	НОГД	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9				
Mell	oourne Laborato	ory - NATA Site #	1254 & 14271												
Syd	ney Laboratory	- NATA Site # 182	217		X	X	X	Х	Х	Х	Х	X	Х	Х	
Bris	bane Laboratory	/ - NATA Site # 2	0794												
Exte	ernal Laboratory		0.1	040.0.07400							X	×	X		
47	BH1/0.1-0.2	Oct 06, 2016	Soil	S16-Oc07109	v						X	X	X		
40	S21/0.0-0.15	Oct 05, 2016	Othe	s16-0c07110	×										
50	DS2	Oct 05, 2016	Soil	S16-Oc07112		x									
51	AC1/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07113	x										
52	SP1/0.3-0.35	Oct 05, 2016	Soil	S16-Oc07114								x		x	
53	SP2/0.3-0.35	Oct 05, 2016	Soil	S16-Oc07115								x		х	
54	R1	Oct 05, 2016	Wat	er S16-Oc07116									Х		
55	R2	Oct 05, 2016	Wat	er S16-Oc07117									Х		
56	DS2	Oct 05, 2016	Soil	S16-Oc08760					Х	Х		Х			
Tes	Test Counts							4	13	13	3	26	7	2	

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Internal Quality Control Review and Glossary General

1. QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Units

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

% w/w: weight for weight b	asis	grams per kilogram
Filter loading:		fibres/100 graticule areas
Reported Concentration:		fibres/mL
Flowrate:		L/min
Terms		
Dry	Where a moisture has been determined on a solid sample the result	It is expressed on a dry basis.
LOR	Limit of Reporting.	
COC	Chain of custody	
SRA	Sample Receipt Advice	
ISO	International Stardards Organisation	
AS	Australian Standards	
WA DOH	Western Australia Department of Health	
NOHSC	National Occupational Health and Safety Commission	
ACM	Bonded asbestos-containing material means any material containin although possibly broken or fragmented, and where the asbestos is to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on a ceiling plaster, ceiling tiles, and gasket materials. This term is restri- approximates the thickness of common asbestos cement sheeting a for fibre release.	g more than 1% asbestos and comprises asbestos-containing-material which is in sound condition, bound in a matrix such as cement or resin. Common examples of ACM include but are not limited acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and cted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it and for fragments to be smaller than this would imply a high degree of damage and hence potential
FA	FA comprises friable asbestos material and includes severely weath is defined here as asbestos material that is in a degraded condition was previously bonded and is now significantly degraded (crumblin-	hered cement sheet, insulation products and woven asbestos material. This type of friable asbestos such that it can be broken or crumbled by hand pressure. This material is typically unbonded or g).
PACM	Presumed Asbestos-Containing Material means thermal system ins than 1980 that are assumed to contain greater than one percent as	sulation and surfacing material found in buildings, vessels, and vessel sections constructed no later bestos but have not been sampled or analyzed to verify or negate the presence of asbestos.
AF	Asbestos fines (AF) are defined as free fibres, or fibre bundles, sma small fibres (< 5 microns in length) are not considered to be such a (Note that for bonded ACM fragments to pass through a 7 mm x 7 r	aller than 7mm. It is the free fibres which present the greatest risk to human health, although very risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve. nm sieve implies a substatntial degree of damage which increases the potential for fibre release.)
AC	Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

This report has been revised to amend Sample ID for sample S16-Oc07111.

Oc07099 - Oc07108 and Oc07113, The samples received were not collected in approved asbestos bags and were therefore sub-sampled from the 250mL glass jars. Valid sub-sampling procedures were applied so as to ensure that the sub-samples to be analysed accurately represented the samples received.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
N/A	Not applicable

Authorised by:

Rhys Thomas

Senior Analyst-Asbestos (NSW)

Glenn Jackson National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood **NSW 2102**

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Tim Gunns

Report Project name Project ID **Received Date** 518936-W-V2 AUSTRAL PHASE 2 1601114B Oct 07, 2016

Client Sample ID			R1	R2
Sample Matrix			Water	Water
Eurofins I mat Sample No			S16-Oc07116	S16-Oc07117
Date Sempled			Oct 05, 2016	Oct 05, 2016
			Oct 05, 2016	Oct 05, 2016
	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions		0.00	0.00
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1
BTEX				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	103	105
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001

Client Sample ID Sample Matrix Eurofins mgt Sample No.			R1 Water S16-Oc07116	R2 Water S16-Oc07117
Date Sampled			Oct 05, 2016	Oct 05, 2016
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Total PAH*	0.001	mg/L	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	73	64
p-Terphenyl-d14 (surr.)	1	%	73	59
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions			
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1
Heavy Metals				
Arsenic	0.001	mg/L	< 0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002
Chromium	0.001	mg/L	< 0.001	< 0.001
Copper	0.001	mg/L	< 0.001	< 0.001
Lead	0.001	mg/L	< 0.001	< 0.001
Mercury	0.0001	mg/L	< 0.0001	< 0.0001
Nickel	0.001	mg/L	< 0.001	< 0.001
Zinc	0.005	mg/L	< 0.005	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B9	-		-
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 13, 2016	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Oct 10, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 10, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 13, 2016	7 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 13, 2016	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Sydney	Oct 10, 2016	28 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			

web : www.eurofins.com.au

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Br

 Unit F3, Building F
 1/2

 16 Mars Road
 Mi

 Lane Cove West NSW 2066
 Mi

 Phone : +61 2 9900 8400
 Ni

 NATA # 1261 Site # 18217
 Mi

Co Ad Pro	Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Project Name: AUSTRAL PHASE 2 Project ID: 1601114 P							der N port i ione: x:	o.: t:	P 5 02 02	O154 18936 2 997 2 997	7 9 1722 9 1222	2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Pro	oject ID:	1601114B														Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail							CANCELLED	HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Svd	ourne Laboratory	NATA Site # 1	<u># 1254 & 142</u> 8217	./1		x	x	x	x	x	x	x	x	x	x	
Bris	bane Laboratory	v - NATA Site #	20794			~				~		~	~			
Exte	rnal Laboratory	,														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	C1	Oct 05, 2016		Soil	S16-Oc07063					х	х		Х			
2	S1/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07064			х								
3	S2/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07065			х								
4	C2	Oct 05, 2016		Soil	S16-Oc07066					Х	Х		Х			
5	S3/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07067			X	⊢							
6	S4/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07068			X	\mid							
7	C3	Oct 05, 2016		Soil	S16-Oc07069				┝──┦	X	X		Х			
8	S5/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07070	-		X	┝──┦							
9	56/0.0-0.15	Oct 05, 2016		Sol	S16-Oc07071			X	┝──┦	X	×		×			
10	C4	Oct 05, 2016		Sol	S16-Oc07072					Х	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Br

 Unit F3, Building F
 1/2

 16 Mars Road
 Mi

 Lane Cove West NSW 2066
 Ph

 Phone: +61 2 9900 8400
 N/4

 NATA # 1261 Site # 18217
 Hesting

Co Ac	Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102						Order No.: PO1547 Report #: 518936 Phone: 02 9979 1722 Fax: 02 9979 1222								Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns
Pr Pr	oject Name: oject ID:	AUSTRAL PHASE 2 1601114B													Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail							HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Melt	pourne Laborato	ry - NATA Site # 1254	& 14271												-
Syd	ney Laboratory ·	• NATA Site # 18217			X	X	X	X	X	X	X	X	X	X	-
Exte		/ - NATA Sile # 20794													-
11	S7/0 0-0 15	Oct 05 2016	Soil	S16-Oc07073			x								-
12	S8/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07074			X								-
13	C5	Oct 05, 2016	Soil	S16-Oc07075					х	х		х			
14	S9/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07076			х								
15	S10/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07077			Х								
16	C6	Oct 05, 2016	Soil	S16-Oc07078					Х	Х		Х			
17	S11/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07079			Х								-
18	S12/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07080			Х								-
19	C7	Oct 05, 2016	Soil	S16-Oc07081					Х	Х		Х			
20	S13/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07082			Х								
21	S14/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07083			Х								
22	C8	Oct 05, 2016	Soil	S16-Oc07084					Х	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 E

 Unit F3, Building F
 1

 16 Mars Road
 N

 Lane Cove West NSW 2066
 P

 Phone: +61 2 9900 8400
 N

 NATA # 1261 Site # 18217
 N

Ca Aa Pi Pi Pi	Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102Project Name:AUSTRAL PHASE 2 1601114B					Or Re Ph Fa	der N port # ione: ix:	o.: #:	P 5 0: 0:	O154 18936 2 997 2 997	7 5 9 1722 9 1222	2 2			Received:Oct 7, 2016 5:25 PMDue:Oct 14, 2016Priority:5 DayContact Name:Tim Gunns
Sample Detail							HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Svd		NATA Site # 1	# 1234 & 14271		x	×	x	x	x	x	x	x	x	x	4
Bris	shane Laboratory	- NATA Site #	20794		~			~			~	~	Λ	~	
Fxt	ernal I aboratory		20104												1
23	S15/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07085			x								
24	S16/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07086			х								
25	C9	Oct 05, 2016	Soil	S16-Oc07087					х	х		Х			1
26	S17/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07088			Х								1
27	S18/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07089			х]
28	C10	Oct 05, 2016	Soil	S16-Oc07090					х	Х		Х]
29	S19/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07091			Х]
30	S20/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07092			Х]
31	C11	Oct 05, 2016	Soil	S16-Oc07093					Х	Х		Х]
32	S21/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07094			Х]
33	S22/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07095			Х]
34	C12	Oct 05, 2016	Soil	S16-Oc07096					Х	Х		Х]

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Brisba

 Unit F3, Building F
 1/21 S

 16 Mars Road
 Murar

 Lane Cove West NSW 2066
 Phone

 Phone: +61 2 9900 8400
 NATA

 NATA # 1261 Site # 18217
 Hone

Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102 Breiget Name: ALISTRAL RHASE 2						Or Re Ph Fa	der N port # one: x:	o.: #:	P 5 02 02	O154 18936 2 9979 2 9979	7 9 172: 9 122:	2 2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns	
Pr	oject ID:	1601114B														Eurofins mgt Analytical Services Manager : Nibha Vaidya
						Asb	CAI	Н	Lea	Org	Met	Vola	Moi	Eur	Eur	
Sample Detail						estos Absence /Presence	NCELLED	Б	۵.	anochlorine Pesticides	als M8	atile Organics	sture Set	ofins mgt Suite B7	ofins mgt Suite B9	
Niela	pourne Laborato	NATA Site # 1	# 1204 & 14271			v	v	v	v	v	v	Y	Y	Y	v	-
Bris	hane Laboratory	- NATA Site # 1	20794			~			~	~	~	~	~	~	~	-
Exte	anal Laboratory	- NATA Site #	20134													
35	S23/0.0-0.15	Oct 05, 2016	Sc	bil	\$16-Oc07097			x								
36	S24/0.0-0.15	Oct 05, 2016	Sc	bil	S16-Oc07098			X								
37	SS1	Oct 05, 2016	Sc	pil	S16-Oc07099	х							х	х		
38	SS2	Oct 05, 2016	Sc	bil	S16-Oc07100	х			х				Х			
39	SS3	Oct 05, 2016	Sc	bil	S16-Oc07101	Х			Х				Х			
40	SS4	Oct 05, 2016	Sc	bil	S16-Oc07102	Х			х				Х			
41	SS5	Oct 05, 2016	Sc	bil	S16-Oc07103	Х			Х				Х			
42	SS6	Oct 05, 2016	Sc	bil	S16-Oc07104	Х						Х	Х]
43	SS7	Oct 05, 2016	Sc	bil	S16-Oc07105	Х						Х	Х]
44	SS8	Oct 05, 2016	Sc	bil	S16-Oc07106	х							х	Х]
45	SS9	Oct 05, 2016	Sc	bil	S16-Oc07107	Х							Х	Х]
46	SS10	Oct 05, 2016	So	bil	S16-Oc07108	х							Х	Х]

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Company Name: Geo-Logix P/L Address: Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102						Order No.: Report #: Phone: Fax:			P 5 02 02	PO1547 518936 02 9979 1722 02 9979 1222					Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns	
Pre Pre	oject Name: oject ID:	AUSTRAL P 1601114B	HASE 2													Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail						Asbestos Absence /Presence	CANCELLED	ногр	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		×					~	×				-
Syd	ney Laboratory		8217			X	X	X	X	X	X	X	X	X	X	
Exto	pane Laboratory	y - NATA Site #	20794													
47	BH1/0 1-0 2	Oct 06 2016		Soil	S16-Oc07109							x	x	х		-
48	SS1/0.0-0.15	Oct 05, 2016		Other	S16-Oc07110	X						~	~	~		
49	S21/0.0-0.15	Oct 05, 2016		Other	S16-Oc07111	х										
50	DS2	Oct 05, 2016		Soil	S16-Oc07112		Х									
51	AC1/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07113	Х										
52	SP1/0.3-0.35	Oct 05, 2016		Soil	S16-Oc07114								Х		Х	
53	SP2/0.3-0.35	Oct 05, 2016		Soil	S16-Oc07115								Х		Х	
54	R1	Oct 05, 2016		Water	S16-Oc07116									х		
55	R2	Oct 05, 2016		Water	S16-Oc07117									Х		
56	DS2	Oct 05, 2016		Soil	S16-Oc08760					Х	Х		х			
Test	Counts					13	1	24	4	13	13	3	26	7	2	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		T	1	T		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Method Blank		1	1	T		
BTEX						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total	mg/L	< 0.003		0.003	Pass	
Method Blank		1	1	1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
Method Blank		1	1	1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/L	< 0.001		0.001	Pass	
Acenaphthylene	mg/L	< 0.001		0.001	Pass	
Anthracene	mg/L	< 0.001		0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001		0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001		0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001		0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001		0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001		0.001	Pass	
Chrysene	mg/L	< 0.001		0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001		0.001	Pass	
Fluoranthene	mg/L	< 0.001		0.001	Pass	
Fluorene	mg/L	< 0.001		0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001		0.001	Pass	
Naphthalene	mg/L	< 0.001		0.001	Pass	
Phenanthrene	mg/L	< 0.001		0.001	Pass	
Pyrene	mg/L	< 0.001		0.001	Pass	
Method Blank		-		-		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	-					
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank						
Heavy Metals						
Arsenic	mg/L	< 0.001		0.001	Pass	
Cadmium	mg/L	< 0.0002		0.0002	Pass	
Chromium	mg/L	< 0.001		0.001	Pass	
Copper	mg/L	< 0.001		0.001	Pass	
Lead	mg/L	< 0.001		0.001	Pass	
Mercury	mg/L	< 0.0001		0.0001	Pass	
Nickel	mg/L	< 0.001		0.001	Pass	
Zinc	mg/L	< 0.005		0.005	Pass	
LCS - % Recovery	. <u> </u>		· ·			

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions						
TRH C6-C9			%	114		70-130	Pass	
TRH C10-C14			%	95		70-130	Pass	
LCS - % Recovery				I	F	1		
BTEX								
Benzene			%	100		70-130	Pass	
Toluene			%	105		70-130	Pass	
Ethylbenzene			%	105		70-130	Pass	
m&p-Xylenes			%	103		70-130	Pass	
o-Xylene			%	107		70-130	Pass	
Xylenes - Total			%	104		70-130	Pass	
LCS - % Recovery				-		1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
Naphthalene			%	95		70-130	Pass	
TRH C6-C10			%	101		70-130	Pass	
LCS - % Recovery				1				
Polycyclic Aromatic Hydrocarbons	;							
Acenaphthene			%	126		70-130	Pass	
Acenaphthylene			%	114		70-130	Pass	
Anthracene			%	128		70-130	Pass	
Benz(a)anthracene			%	106		70-130	Pass	
Benzo(a)pyrene			%	97		70-130	Pass	
Benzo(b&j)fluoranthene			%	83		70-130	Pass	
Benzo(g.h.i)perylene			%	125		70-130	Pass	
Benzo(k)fluoranthene			%	106		70-130	Pass	
Chrysene			%	115		70-130	Pass	
Dibenz(a.h)anthracene			%	109		70-130	Pass	
Fluoranthene			%	119		70-130	Pass	
Fluorene			%	121		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	114		70-130	Pass	
Naphthalene			%	130		70-130	Pass	
Phenanthrene			%	130		70-130	Pass	
Pyrene			%	122		70-130	Pass	
LCS - % Recovery		•				1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions	0/	100		70.400	Deer	
			%	100		70-130	Pass	
LCS - % Recovery						1	_	
			0/	00		70.400	Daaa	
Alsenic			%	93		70-130	Pass	
Cadmium			% 0/	90		70-130	Pass	
Coppor			70 0/	99		70-130	Pass	
			70 0/	100		70-130	Pass	
Mercury			/0 0/_	07		70-130	Pass	
Nickel			/0 0/_	97		70-130	Pass	
Zinc			70 0/	95		70-130	Dass	
		04	70			Accentance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1		Limits	Limits	Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S16-Oc07118	NCP	%	96		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S16-Oc07118	NCP	%	89		70-130	Pass	
Toluene	S16-Oc07118	NCP	%	94		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Ethylbenzene	S16-Oc07118	NCP	%	94			70-130	Pass	
m&p-Xylenes	S16-Oc07118	NCP	%	92			70-130	Pass	
o-Xylene	S16-Oc07118	NCP	%	94			70-130	Pass	
Xylenes - Total	S16-Oc07118	NCP	%	92			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S16-Oc07118	NCP	%	75			70-130	Pass	
TRH C6-C10	S16-Oc07118	NCP	%	85			70-130	Pass	
Spike - % Recovery				-					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C10-C14	S16-Oc06733	NCP	%	121			70-130	Pass	
Spike - % Recovery				1			1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S16-Oc06733	NCP	%	126			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				-					
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S16-Oc06732	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S16-Oc06732	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S16-Oc06732	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				1					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S16-Oc06732	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S16-Oc06732	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S16-Oc06732	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				Ť	· · · · ·		1		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S16-Oc07117	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate				1			1		
BTEX	I			Result 1	Result 2	RPD			
Benzene	S16-Oc07117	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S16-Oc07117	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S16-Oc07117	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S16-Oc07117	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S16-Oc07117	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S16-Oc07117	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				1					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S16-Oc07117	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S16-Oc07117	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Comments

This report has been revised to amend Sample ID for sample S16-Oc07111.

Analytical Services Manager

Senior Analyst-Organic (NSW)

Senior Analyst-Volatile (NSW)

N/A
Yes
No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

N07 Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised By

Nibha Vaidya Ryan Hamilton Ryan Hamilton

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

2	1
S	eo-Logix

CHAIN OF CUSTODY

Page	1	01
		-

3

	Project Manager:	Tim Gunns		_	Purchase Ord
Geo-Logix PhLtd Building Q2, L el 3 Unit 2309/4	Contact Email:	tgunns@geo-logix.com.au		-	Quote Referen
Daydream St. Jarriewood NSW 2102	Project Name:	Austral Phase 2		_	Invoice to:
ABN: 86116 12 936	Project Number:	1601114B	Date Submitted:	07-10-16	TAT required:

Date/Time: _______ 7 - 10 - 16 Signature _____

Purchase Order No:	PO1547				
Quote Reference:	1610060				
Invoice to:	account				

STD

Received by the Mer Date/Time: +10-16 Signature: Erkin ha Effingt, 071016 1725. 902

161006GLX 5 accounts@geo-logix.com.au

P: (02) 9979 172

2) 3373 1	Matrix															ļ	ANA	LYS	SIS F	REQ	UIRI	ED						
.ab ID	Sample ID	Date	Soil	Water	Mat 	Paint / ACM		be 50 Comm	ents	НОГД	COMPOSITE	OCP/M8	B9	B7	ASBESTOS ID	LEAD	voc										Eurofins MGT Suite Codes	
	S1/0.0-0.15	05-10-16	X		Γ			Composite with	\$2/0.0-0.15		X		_													B1	TRH/BTEXN	
	S2/0.0-0.15	05-10-16	X		Γ		Γ	Composite with	S1/0.0-0.15		X															92	TRH/BTEXN/Pb	
	S3/0.0-0.15	05-10-16	X		T		_	Composite with	S4/0.0-0.15		X															B2A	TRH/MAH/Pb	
	S4/0.0-0.15	05-10-16	X	1	T		t	Composite with	S3/0.0-0.15		X															Вз	PAH/Phenois	
	\$5/0.0-0.15	05-10-16	x		\uparrow	-	┢	Composite with	S6/0.0-0.15		x							+								B4	TRH/BTEXN/PAH	
	S6/0.0-0.15	05-10-16	X		+	+	┢	Composite with	S5/0.0-0.15	\vdash	x	+		\neg	\neg	-+	+	+	+							85	TRH/BTEXN/M7	
	S7/0.0-0.15	05-10-16	x	+	╞		$^{+}$	Composite with	\$8/0.0-0.15		x				-		-	+					+			86	TRH/BTEXN/M8	
	\$8/0.0-0.15	05-10-16 _	x	+	+	+	+	Composite with	S7/0.0-0.15	 -	x			\rightarrow	\rightarrow	-+	+		+-			+				 87	TRH/BTEXN/PAH/M8	
	S9/0 0-0 15	05-10-16	x	+	+	+	+	Composite with	S10/0.0-0.15	\vdash	x		_	-+	-+	-+	+	-	+				+			B7A	TRH/BTEXN/PAH/Phenols/M8	
	S10/0 0-0 15	05-10-16		+	┢	+	┢	Composite with	S9/0 0-0 15	┢					-+				+	+			┼╌┼			 B9	TRH/BTEXN/PAH/OCP/M6	
	S11/0.0.0.15	05 10 16	Ê	-	+	+	┢	Composite with		┢	Ê			\rightarrow	-+			_	+	+			+		-	B10	TRH/BTEXN/PAH/OCP/OPP/M8	
	311/0.0-0.15	05-10-10	<u>l</u>		-		┢	Composite with	312/0.0-0.15		L.				_							_	+	_	$\left - \right $	 B11	Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH3	/NO3
	\$12/0.0-0.15	05-10-16		-	+	+	+	Composite with	\$11/0.0-0.15		×		-		\rightarrow	_	-	_				_	$\left \right $	_		 - B11A	B11/Alkalinity	
	S13/0.0-0.15	05-10-16	X	ļ	_	_	\downarrow	Composite with	S14/0.0-0.15	ļ	X				$ \rightarrow$		-		_	+		_				 B11B	TRH/BTEXN/Oxygenates/Ethanol	
	S14/0.0-0.15	05-10-16	×		_	_		Composite with	S13/0.0-0.15	<u> </u>	X			$ \rightarrow $	-							_		_		 B12A	TRH/BTEXN/Oxygenates	÷
	S15/0.0-0.15	05-10-16	×					Composite with	S16/0.0-0.15		X															 B13	OCP/PCB	-
	S16/0.0-0.15	05-10-16	X					Composite with	S15/0.0-0.15		X															614	OCP/OPP	
	S17/0.0-0.15	05-10-16	X					Composite with	S18/0.0-0.15		X															B15		100
	S18/0.0-0.15	05-10-16	X				1	Composite with	S17/0.0-0.15		X															B17	SO4/NO3/Fe++/HPC/CUB	
	S19/0.0-0.15	05-10-16	X		1	1	t	Composite with	\$20/0.0-0.15	1	X															B18	CI-/SO4/pH	
	\$20/0.0-0.15	05-10-16	x	1	\uparrow	1	┢	Composite with	S19/0.0-0.15	\vdash	x			-+		+								1-		B19	N/P/K	
	S21/0.0-0.15	05-10-16	x	1	\uparrow	+	\dagger	Composite with	\$22/0.0-0.15	1-	x		_	-+	-	-1				1			† -†			 B20	CEC/%ESP/Ca/Ma/Na/K	
			L	L	1			_1		L	1					1				1	<u>r </u>		Anna A		_	 	the or or or build and the or the order	

Relinquished by Th

13th March 2002

ding Q2, Lev	Ltd rel 3 Unit 2309/4		Con	tact	Ema	il:	· ·	tgunns@geo-logix.com.au								Quo	te Re	feren	er NC	16	1006	GLX				_		DTD
/dream St. W N 2102	/arriewood		Proj	ect N	Nami	е:		Austral Phase 2								Invo	ice to	:		ac	cou	nts@	geo-l	ogix.	com.	au		
N: 86 116 89	2 936		Proi	ect N	Num	ber:		1601114B Date	e Sub	mitte	ed:	07-1	0-16			ΤΑΤ	requ	ired		SI	D							
02) 9979 172	22								_				_		_		requ	in o di .										
		,	-						_			_			1A	NALY	'SIS	RE	QU	IRE	D							
			\vdash	M	latri	x				벁			!	S S														
		ļ				ACM				ISO	8			210														Eurofins MGT
				ter		nt/	ler		12	M	Ň				ရဲပြ													Suite Codes
ab ID	Sample ID	Date	ŝ	<u>×</u> a	Air	Pai	ŝ	Comments	臣	8	ŏ	8	6	A A A	15	2	_											
	\$22/0.0-0.15	06-10-16	X					Composite with S21/0.0-0.15		×																	B1	TRH/BTEXN
		06-10-16	X					Composite with S24/0.2-0.25		X																	B1A	TRH/MAH
	S24/0.0-0.16	06-10-16	X					Composite with S23/0.0-0.15		X																	B2A	TRH/MAH/Pb
	C1	-	X					Comp of S1/S2 as above			х											1					вз	PAH/Phenois
	C2	-	X					Comp of S3/S4 as above			х																В4	TRH/BTEXN/PAH
	C3	-	X					Comp of S5/S6 as above			х						-		+	+	+	+	\square	-			B4A	TRH/BTEXN/PAH/Phenois
	C4	-	X					Comp of S7/S8 as above			х				1	+	\neg		+	+	+-	+			+	+	B5	TRH/BTEXN/M7
	C5	-	X					Comp of S9/S10 as above			х		1		+			+		+-	+			+		+	B6	TRH/BTEXN/M8
	C6	-	X					Comp of S11/S12 as above			х			-	+		-+	+		+	+	+-		+		+	B7A	TRH/BTEXN/PAH/Phenois/M8
	C7	-	X			-	_	Comp of S13/S14 as above			х			-		+		+	+	+	+	+		+		+	B8	TRH/VOC/PAH/M6
	C8	-	X					Comp of S15/S16 as above			х			+	-	+	-		+	+	+	+		-		+	B9	TRH/BTEXN/PAH/OCP/M8
	C9	-	X					Comp of S17/S18 as above			х		-+		+	+ +	-		+	+	+	+		+	+	+	B10	TRH/BTEXN/PAH/OCP/OPP/M8
	C10	-	x					Comp of S19/S20 as above			X		+	+	+-		-+	-		+-	+	+		+	-	+	B11	Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH3/NO
	C11	-	x					Comp of S21/S22 as above	+		х		+	+	+				+	+	+	+	+ +	+		+	B11A	B11/Alkalinity
	C12		x		-			Comp of S23/S24 as above	╂─┤		x		-		+	+				+		+	┼─┼	-+-	+	+	B12	TRH/BTEXN/Oxygenates/Ethangl
		05-10-16	x	+		-	_		\vdash				x	×	+	+			+	+	+-	+				+	B12A	TRH/BTEXN/Oxygenates
		05-10-16	x						+					$\frac{2}{\sqrt{2}}$	_	-			_		+	+	$\left - \right $	-+			B13	OCP/PCB
		05-10-16	X	-+	\neg	_		· · · · · · · · · · · · · · · · · · ·	┢─┤				-+	$\frac{1}{\sqrt{2}}$, ,	+-+		_		+		+				+	B14	OCP/OPP
	SS4	05-10-16	X	-+	-				+				-+-) (<u> </u>	+		_	+	+	+	+	-+			+	B15	OCP/OPP/PCB
		05-10-10	Ĥ	-		_			+				-+	$\frac{1}{2}$	<u>.</u>	+		_		+		-		_			B16	TDS/SO4/CH4/Alk/BOD/COD/HPC/CUB
		05.40.46	$\left \uparrow \right $	\rightarrow	-	_	_							$\frac{2}{3}$	` 	+			-	+		+				-	B18	SU9/NU3/F8++/HPC/CUB
	000	05-10-10							╂──					<u>^</u>	×			+	-	+	+		$\left - \right $				B19	N/P/K
	001	05-10-16		\rightarrow	_		_		+					×	X		_	A		+		+				+	B20	CEC/%ESP/Ca/Ma/Na/K
	<u> </u>	05-10-16			_		_				_		×	×			X	4									R21	%Fe/ CEC/ pH(CaCl2)/ TOC/ % Clay
									C	HA	IN (OF	CUS	TO	YC							Ĉ						

ء 🏈	eo-Logix							CHAIN C	OF C	:US	ST(OD	Y												Page	_	3 0	of _3	_	
	co rogix		Proj	ject l	Man	ager	:	Tim Gunns									P	urch	ase	Orde	r No	PO	1547							
Geo-Logix Pty I Building Q2, Lev	_td el 3 Unit 2309/4		Сол	itact	Ema	ail:		tgunns@geo-logix.com.au				_					Q	uote	Ref	eren	ce:	161	0060	SLX					_	
Daydream St, W NSW 2102	arriewood		Ргој	ject	Nam	ie:		Austral Phase 2	_								In	void	e to:	:		acc	oun	ts@g	eo-l	ogix.	con	<u>1.au</u>	-	
ABN: 86 116 89	2 936		Pro	iect l	Num	ber:		1601114B D	ate Si	ıbmi	tted	. 07	'-10	-16			T	AT ra	eauir	red:		STE)							
P: (02) 9979 172	22		,	,									_	-	_	_						_	_					_		
																A	NAI	LYS	SIS	RE	QUI	REC)		-		-	_		
				N	latr	ix		-						ļ	2				ĺ										7	
Lab ID	Sample ID	Date	Soil	Water	Air	Paint / ACM	Other	Comments		COMPOSITE		UCP/M8	3 1	B7 ACDECTOC I	Abbealual	LEAU	202													Eurofins MGT Suite Codes
	SS9	05-10-16	X											x >	x														81	TRH/BTEXN
	\$\$10	05-10-16	X											x >	x														- B1/	A TRH/MAH
	BH1/0.1-0.2	06-10-16	X				\square			1	+			x		,						1-					+		B2/	ча трниман/Рь
	SS1/0 0-0.15	05-10-16	\vdash				X	Fibro fragement		-	+-		t	1,	x				1	+	-	-				-			Вз	PAH/Phenois
	S21/0.0-0.15	05-10-16	\vdash			\vdash	X	Fibro fragement		- -	- -		+		x	+	+	+	+-	+									- B4	TRH/BTEXN/PAH
	D\$2	05-10-16	X		+					+	+	x	+	-	-				-		+				+		+		- ^{84/} ₈₅	A TRH/BTEXN/PAH/Phenols
	AC1/0.0-0.15	05-10-16	x						+		+		+	+,	x			-	+					-	+		-		B6	TRH/BTEXN/M8
	SP1/0.3_0.35	05-10-16	X	\vdash	\vdash	\vdash	-		-	+	+	+	+	- <u></u>	<u>`</u> -	+		-	+			-		-	-	-	+		- В7	TRH/BTEXN/PAH/M8
	CD2/0.2.0.25	05-10-10	$\overline{}$	-					-	+	+		+		+	+	+				+	+							B7/	A TRH/BTEXN/PAH/Phenols/M8
	SP2/0.3-0.35	05-10-10	<u> </u> ^_							_	+-	+		_	+		_	_	_	_	+			\rightarrow	\rightarrow	_	_	_	88	
<u> </u>	R1	05-10-16	-	×		-	<u> </u>			_	_		Ļ	×		_			_		_			\rightarrow	_				B10	0 TRH/BTEXN/PAH/OCP/OPP/M8
	R2	06-10-16		X		_	<u> </u>		_	_	_		'	× –	_						_	-							_ B11	1 Na/K/Ca/Mg/Cl/SO4/CO3/HCO3/NH3/NO3
														\perp	\perp										_				B11	1A B11/Alkatinity
		,				- 21																							B11	18 B11/EC/TDS
																													B12	2 TRH/BTEXN/Oxygenates/Ethanol
		1																												3 OCP/PCB
				1		1					╈		╈	+	-	-					+	1				+			B14	4 OCP/OPP
			+	1-	+	+	+			-	+		+	+	+		+	+	+					\rightarrow		-	-+-		B15	5 OCP/OPP/PCB
		[+	\vdash	-	+	+		+	-	+	-	┾	+				_ -			+			\rightarrow		_			- B16	6 TDS/SO4/CH4/Alk/BOD/COD/HPC/CUB
					<u> </u>					_	-		+	+				_			+			\rightarrow	_	_			B17	7 SO4/NO3/Fe++/HPC/CUB
						_			-+			_								_									618	B CI-/SO4/pH
																													619	
	7.																												R21	GEG/RESP/Ca/Mainark SEe/ CEC/ pH/CaCl2V TOC/ % Clav
L	· · · · · · · · · · · · · · · · · · ·	·		·				•		_			_							-/	1	_ <u></u>				L.				

CHAIN OF CUSTODY

p,

Relinquished by: _ 1. 20

80 ED

Date/Time: 7-10-16 TL

Date/Time: 7-(0-(6 Signature: Received by:

۰.

12th March 2009

Siamak Sobhanei

Enorm	Nilaha Valaha
From:	Nibha valoya
Sent:	Tuesday, 11 October 2016 10:25 AM
То:	!AU04_CAU001_EnviroSampleNSW
Subject:	FW: Dups and Trips for Austral

Can you please make the below amendments? Please confirm once done.

High

Kind Regards,

Importance:

Nibha Vaidya Phone: +61 2 9900 8415 Mobile : +61 499 900 805 Email : NibhaVaidya@eurofins.com

From: Tim Gunns [mailto:tgunns@geo-logix.com.au] Sent: Tuesday, 11 October 2016 10:17 AM To: Nibha Vaidya Subject: Dups and Trips for Austral

Hi Nibha

As discussed can you please update the following jobs in regards to the dups and trips.

1601114C

- Cancel DS2 and TS2
- Split composite C10 into a duplicate (DS2) and triplicate (TS2) #518939
- Send triplicate to Melbourne

1601114B

- Cancel DS2 and TS2
- Split composite C11 into a duplicate (DS2) and triplicate (TS2) # 518936 .
- Send triplicate to Melbourne

Also, the Tamworth job got pushed back so I will have to pick up the sample jars tomorrow instead.

Cheers

Tim

Tim Gunns | Project Scientist Unit 2309/4 Daydream St, Warriewood NSW 2102 T: 02 9979 1722 | M: 0411 724 429 | W: www.geo-logix.com.au

Geo-Logix environment · geotech Sydney | Brisbane | Canberra

This email is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended recipient please delete this email immediately. Use, disclosure or reproduction of this email by anyone other than the intended

Web : www.eurofins.com.au NAT.

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Company name.	Oeo-Logix I /L
Contact name:	Tim Gunns
Project name:	AUSTRAL PHASE 2
Project ID:	1601114B
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Oct 7, 2016 5:25 PM
Eurofins mgt reference:	518936

Coo Logix D/

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : .9 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Tim Gunns - tgunns@geo-logix.com.au.

38 Years of Environmental Analysis & Experience

r,

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 Brist

 Unit F3, Building F
 1/21

 16 Mars Road
 Mura

 Lane Cove West NSW 2066
 Phor

 Phone: +61 2 9900 8400
 NAT.

 NATA # 1261 Site # 18217
 Hara

Co Ad	ompany Name: Idress:	Geo-Logix P/ Bld Q2 Level Warriewood NSW 2102			Or Re Ph Fa	der N port / one: x:	o.: #:	P(51 02 02	O1547 18936 2 9979 2 9979	7 9 1722 9 1222	2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns		
Pro Pro	oject Name: oject ID:	AUSTRAL PI 1601114B	HASE 2													Furofins I mat Analytical Services Manager - Nibba Vaidva
						Þ	0	т	F	0	2	<	7	т	п	
		Sa	mple Detail			sbestos Absence /Presence	ANCELLED	OLD	ead	rganochlorine Pesticides	letals M8	olatile Organics	loisture Set	urofins mgt Suite B7	urofins mgt Suite B9	
Melk	ourne Laborato	ory - NATA Site	<u># 1254 & 142</u>	.71		v	v	v	×	v	v	v	v	v		
Brie	hey Laboratory -		0217 20707			^	^	^	^	^	^	^	^	^	^	
Exte	rnal Laboratory	- NATA Site #	20134													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	C1	Oct 05, 2016		Soil	S16-Oc07063					Х	х		х			
2	S1/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07064			Х								
3	S2/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07065			Х								
4	C2	Oct 05, 2016		Soil	S16-Oc07066					Х	Х		Х			
5	S3/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07067			Х								
6	S4/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07068			Х								
7	C3	Oct 05, 2016		Soil	S16-Oc07069					Х	Х		Х			
8	S5/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07070			Х								
9	S6/0.0-0.15	Oct 05, 2016		Soil	S16-Oc07071			Х								
10	C4	Oct 05, 2016		Soil	S16-Oc07072					х	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

 Sydney
 Brisbane

 Unit F3, Building F
 1/21 Sma

 16 Mars Road
 Murarrie

 Lane Cove West NSW 2066
 Phone : +

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 18217

Co Ad Pro Pro	ompany Name: Idress: oject Name: oject ID:	Geo-Logix P/ Bld Q2 Level Warriewood NSW 2102 AUSTRAL Pl 1601114B	/L 3, 2309/4 Daydream \$ HASE 2	St		Ore Re Ph Fa	der N port # one: x:	o.: #:	P 5 02 02	O154 18936 2 997 2 997	7 9 172 9 122	2 2			Received:Oct 7, 2016 5:25 PMDue:Oct 14, 2016Priority:5 DayContact Name:Tim Gunns
		Sa	mple Detail		Asbestos Absence /Presence	CANCELLED	НОГД	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Neit	bourne Laborato	NATA Site # 1	# 1204 & 14271		v	v	v	v	v	v	v	v	v	v	
Bris	bane Laboratory	/ - NATA Site #	20794		~	~		~			~			~	
Exte	rnal Laboratory														
11	S7/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07073			х								
12	S8/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07074			х		l						
13	C5	Oct 05, 2016	Soil	S16-Oc07075					Х	Х		х			
14	S9/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07076			Х								
15	S10/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07077			Х								
16	C6	Oct 05, 2016	Soil	S16-Oc07078					Х	Х		Х			
17	S11/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07079			Х								
18	S12/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07080			Х								
19	C7	Oct 05, 2016	Soil	S16-Oc07081					Х	Х		Х			
20	S13/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07082			Х								
21	S14/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07083			Х								
22	C8	Oct 05, 2016	Soil	S16-Oc07084					Х	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

 Sydney
 Brisbane

 Unit F3, Building F
 1/21 Sma

 16 Mars Road
 Murarrie

 Lane Cove West NSW 2066
 Phone : +

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 18217

Cc Ad Pr Pr	ompany Name: Idress: oject Name: oject ID:	Geo-Logix P/ Bld Q2 Level Warriewood NSW 2102 AUSTRAL PI 1601114B	′L 3, 2309/4 Daydream St HASE 2			Or Re Ph Fa	der N port # one: x:	o.: #:	P 5 0: 0:	O154 18936 2 997 2 997	7 5 9 172 9 122	2 2			Received:Oct 7, 2016 5:25 PMDue:Oct 14, 2016Priority:5 DayContact Name:Tim Gunns
		Sa	mple Detail		Asbestos Absence /Presence	CANCELLED	НОГД	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Svd	pov Laboratory	NATA Site # 1	# 1204 & 14271 9017		x	x	x	x	x	x	x	x	x	x	
Bris	bane Laboratory	/ - NATA Site #	20794		~	~		~						~	
Exte	rnal Laboratory		20101												
23	S15/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07085			х								
24	S16/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07086			х								
25	C9	Oct 05, 2016	Soil	S16-Oc07087					х	х		x			
26	S17/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07088			х				l				
27	S18/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07089			Х								
28	C10	Oct 05, 2016	Soil	S16-Oc07090					Х	Х		Х			
29	S19/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07091			Х								
30	S20/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07092			Х								
31	C11	Oct 05, 2016	Soil	S16-Oc07093					Х	Х		Х			
32	S21/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07094			Х								
33	S22/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07095			Х								
34	C12	Oct 05, 2016	Soil	S16-Oc07096					Х	Х		Х			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

 Sydney
 Brisbane

 Unit F3, Building F
 1/21 Sma

 16 Mars Road
 Murarrie

 Lane Cove West NSW 2066
 Phone : +

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 18217

Co Ad	mpany Name: dress:	Geo-Logix P/I Bld Q2 Level Warriewood NSW 2102			Or Re Ph Fa	der Ne port # one: x:	0.: #:	P 5 02 02	O154 18936 2 9979 2 9979	7 5 9 1722 9 1222	2 2			Received: Oct 7, 2016 5:25 PM Due: Oct 14, 2016 Priority: 5 Day Contact Name: Tim Gunns		
Pro Pro	oject Name: oject ID:	AUSTRAL PH 1601114B	HASE 2													Eurofins mgt Analytical Services Manager : Nibha Vaidya
		San	nple Detail			Asbestos Absence /Presence	CANCELLED	HOLD	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Svd	ev Laboratory -	NATA Site # 18	R217	•		x	x	x	х	x	x	x	x	x	x	-
Bris	bane Laboratory	- NATA Site # 2	20794			~	~	~	~	~	~	~	~	~	~	
Exte	rnal Laboratory															
35	S23/0.0-0.15	Oct 05, 2016	s	Soil	S16-Oc07097			Х								
36	S24/0.0-0.15	Oct 05, 2016	S	Soil	S16-Oc07098			Х								
37	SS1	Oct 05, 2016	S	Soil	S16-Oc07099	Х							Х	Х		
38	SS2	Oct 05, 2016	S	Soil	S16-Oc07100	Х			Х				Х			
39	SS3	Oct 05, 2016	S	Soil	S16-Oc07101	Х			Х				Х			
40	SS4	Oct 05, 2016	S	Soil	S16-Oc07102	Х			Х				Х			
41	SS5	Oct 05, 2016	S	Soil	S16-Oc07103	Х			Х				Х			
42	SS6	Oct 05, 2016	s	Soil	S16-Oc07104	Х						Х	Х			
43	SS7	Oct 05, 2016	S	Soil	S16-Oc07105	Х						Х	Х			
44	SS8	Oct 05, 2016	s	Soil	S16-Oc07106	Х							Х	Х		
45	SS9	Oct 05, 2016	s	Soil	S16-Oc07107	Х							Х	Х		
46	SS10	Oct 05, 2016	S	Soil	S16-Oc07108	Х							Х	Х		

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Co Ad	mpany Name: dress:	Geo-Logix P/L Bld Q2 Level 3, 2309/4 Da Warriewood NSW 2102	nydream St			Or Re Ph Fa	der N port # one: x:	0.: #:	P 5 02 02	O154 18936 2 9979 2 9979	7 9 1722 9 1222	2			Received:Oct 7, 2016 5:25 PMDue:Oct 14, 2016Priority:5 DayContact Name:Tim Gunns
Pro Pro	oject Name: oject ID:	AUSTRAL PHASE 2 1601114B													Eurofins mgt Analytical Services Manager : Nibha Vaidya
		Sample Detail			Asbestos Absence /Presence	CANCELLED	ногр	Lead	Organochlorine Pesticides	Metals M8	Volatile Organics	Moisture Set	Eurofins mgt Suite B7	Eurofins mgt Suite B9	
Melk	ourne Laborato	ory - NATA Site # 1254 & 142	271												
Sydi	ney Laboratory	• NATA Site # 18217			X	X	Х	Х	Х	Х	X	Х	Х	Х	
Bris	bane Laboratory	/ - NATA Site # 20794													
		Oct 06, 2016	Soil	S16-Oc07109							x	x	x		
48	SS1/0.0-0.15	Oct 05, 2016	Other	S16-Oc07110	x						~	~	~		
49	S21/0.0-0.15	Oct 05, 2016	Other	S16-Oc07111	х										
50	DS2	Oct 05, 2016	Soil	S16-Oc07112		х									
51	AC1/0.0-0.15	Oct 05, 2016	Soil	S16-Oc07113	Х										
52	SP1/0.3-0.35	Oct 05, 2016	Soil	S16-Oc07114								Х		Х	
53	SP2/0.3-0.35	Oct 05, 2016	Soil	S16-Oc07115								Х		Х	
54	R1	Oct 05, 2016	Water	S16-Oc07116									Х		
55	R2	Oct 05, 2016	Water	S16-Oc07117									х		
56	DS2	Oct 05, 2016	Soil	S16-Oc08760					Х	Х		Х			
Test	Counts				13	1	24	4	13	13	3	26	7	2	

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Tim Gunns

Report Project name Project ID Received Date **515294-S** 80 EDMONDSON AVE 1601067 Sep 12, 2016

Client Sample ID			TS1
Sample Matrix			Soil
Eurofins mgt Sample No.			M16-Se10507
Date Sampled			Sep 09, 2016
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions		
TRH C6-C9	20	ma/ka	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-36 (Total)	50	mg/kg	< 50
BTEX		00	
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	55
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5

Client Sample ID			TS1
Sample Matrix			Soil
Eurofins mgt Sample No.			M16-Se10507
Date Sampled			Sep 09, 2016
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons		0	
Naphthalene	0.5	ma/ka	< 0.5
Phenanthrene	0.5	ma/ka	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	93
p-Terphenyl-d14 (surr.)	1	%	84
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	0.30
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
	0.05	mg/kg	< 0.05
I oxaphene	1	mg/kg	< 1
	1	%	140
Tetrachioro-m-xylene (surr.)	1	%	120
Total Recoverable Hydrocarbons - 2013 NEPM Fract			
TRH >010-016	50	mg/kg	< 50
	100	mg/kg	< 100
	100	∣ mg/kg	< 100
Heavy Metals	0		44
Arsenic	2	mg/kg	14
Cadmium	0.4	mg/kg	< 0.4
Connor	5	mg/kg	10
Copper	5	mg/kg	16
Moroup	5	mg/kg	22
	U.I	mg/kg	<u> < 0.1</u> 7 7
Zinc	5	mg/kg	56
	5	пу/ку	
% Moisture	1	%	28
•			

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 13, 2016	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Melbourne	Sep 13, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 13, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 13, 2016	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Organochlorine Pesticides	Melbourne	Sep 13, 2016	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 13, 2016	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Melbourne	Sep 13, 2016	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Sep 12, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN – 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream StWarriewoodWarriewoodNSW 210280 EDMONDSON AVEProject ID:1601067			Ore Re Ph Fa	erder No.: eport #: hone: ax:	PO1498 515294 02 9979 1722 02 9979 1222	_	Received: Due: Priority: Contact Name:	Sep 12, 2016 8:10 AM Sep 19, 2016 5 Day Tim Gunns				
Sample Detail				Moisture Set	Eurofins mgt Suite B9			Euro		ai Services Manager : Nibila Valdya		
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	_				
Sydney Laboratory - NATA Site # 18217					-							
External Laboratory						-						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	TS1	Sep 09, 2016		Soil	M16-Se10507	Х	Х					
Test	Counts					1	1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			1	1		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank				1		
втех	1					
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total	mg/kg	< 0.3		0.3	Pass	
Method Blank				1		
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank				1		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass	
Phenanthrene	mg/kg	< 0.5		0.5	Pass	
Pyrene	mg/kg	< 0.5		0.5	Pass	
Method Blank			I I	1	1	
Organochlorine Pesticides	1					
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	

eurofins mgt

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank			-			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	mg/kg	< 50		50	Pass	
TRH >C16-C34	mg/kg	< 100		100	Pass	
TRH >C34-C40	mg/kg	< 100		100	Pass	
Method Blank		1	-			
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	-					
TRH C6-C9	%	89		70-130	Pass	
TRH C10-C14	%	97		70-130	Pass	
LCS - % Recovery						
втех	-					
Benzene	%	92		70-130	Pass	
Toluene	%	93		70-130	Pass	
Ethylbenzene	%	94		70-130	Pass	
m&p-Xylenes	%	93		70-130	Pass	
Xylenes - Total	%	94		70-130	Pass	
LCS - % Recovery			-			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	-					
Naphthalene	%	108		70-130	Pass	
TRH C6-C10	%	86		70-130	Pass	
LCS - % Recovery						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	%	95		70-130	Pass	
Acenaphthylene	%	105		70-130	Pass	
Anthracene	%	92		70-130	Pass	
Benz(a)anthracene	%	97		70-130	Pass	
Benzo(a)pyrene	%	81		70-130	Pass	
Benzo(b&j)fluoranthene	%	97		70-130	Pass	
Benzo(g.h.i)perylene	%	78		70-130	Pass	
Benzo(k)fluoranthene	%	77		70-130	Pass	
Chrysene	%	92		70-130	Pass	
Dibenz(a.h)anthracene	%	97		70-130	Pass	
Fluoranthene	%	79		70-130	Pass	
Fluorene	%	98		70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	86		70-130	Pass	
Naphthalene	%	98		70-130	Pass	
Phenanthrene	%	117		70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Pyrene			%	75		70-130	Pass	
LCS - % Recovery				1				
Organochlorine Pesticides								
4.4'-DDD			%	104		70-130	Pass	
4.4'-DDE			%	100		70-130	Pass	
4.4'-DDT			%	95		70-130	Pass	
a-BHC			%	106		70-130	Pass	
Aldrin			%	114		70-130	Pass	
b-BHC			%	102		70-130	Pass	
d-BHC			%	111		70-130	Pass	
Dieldrin			%	111		70-130	Pass	
Endosulfan I			%	107		70-130	Pass	
Endosulfan II			%	98		70-130	Pass	
Endosulfan sulphate			%	104		70-130	Pass	
Endrin			%	103		70-130	Pass	
Endrin aldehyde			%	96		70-130	Pass	
Endrin ketone			%	118		70-130	Pass	
g-BHC (Lindane)			%	108		70-130	Pass	
Heptachlor			%	97		70-130	Pass	
Heptachlor epoxide			%	106		70-130	Pass	
Hexachlorobenzene			%	94		70-130	Pass	
Methoxychlor			%	102		70-130	Pass	
LCS - % Recovery				1				
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions						
TRH >C10-C16			%	100		70-130	Pass	
LCS - % Recovery				1	I I			
Heavy Metals								
Arsenic			%	99		80-120	Pass	
Cadmium			%	102		80-120	Pass	
Chromium			%	104		80-120	Pass	
Copper			%	112		80-120	Pass	
Lead			%	101		80-120	Pass	
Mercury			%	96		75-125	Pass	
Nickel			%	101		80-120	Pass	
Zinc			%	90		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1				
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M16-Se10333	NCP	%	101		70-130	Pass	
TRH C10-C14	M16-Se10769	NCP	%	94		70-130	Pass	
Spike - % Recovery				1	r			
BTEX				Result 1				
Benzene	M16-Se10333	NCP	%	94		70-130	Pass	
Toluene	M16-Se10333	NCP	%	100		70-130	Pass	
Ethylbenzene	M16-Se10333	NCP	%	102		70-130	Pass	
m&p-Xylenes	M16-Se10333	NCP	%	102		70-130	Pass	
o-Xylene	M16-Se10333	NCP	%	103		70-130	Pass	
Xylenes - Total M16-Se10333 NCP				102		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	M16-Se10333	NCP	%	115		70-130	Pass	
TRH C6-C10	M16-Se10333	NCP	%	94		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons			Result 1					

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthene	M16-Se10427	NCP	%	94	70-130	Pass	
Acenaphthylene	M16-Se10427	NCP	%	103	70-130	Pass	
Anthracene	M16-Se10427	NCP	%	87	70-130	Pass	
Benz(a)anthracene	M16-Se10427	NCP	%	110	70-130	Pass	
Benzo(a)pyrene	M16-Se10427	NCP	%	91	70-130	Pass	
Benzo(b&j)fluoranthene	M16-Se10427	NCP	%	79	70-130	Pass	
Benzo(g.h.i)perylene	M16-Se10427	NCP	%	111	70-130	Pass	
Benzo(k)fluoranthene	M16-Se10427	NCP	%	97	70-130	Pass	
Chrysene	M16-Se10427	NCP	%	84	70-130	Pass	
Dibenz(a.h)anthracene	M16-Se10427	NCP	%	123	70-130	Pass	
Fluoranthene	M16-Se10427	NCP	%	103	70-130	Pass	
Fluorene	M16-Se10427	NCP	%	94	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M16-Se10427	NCP	%	113	70-130	Pass	
Naphthalene	M16-Se10427	NCP	%	int	70-130	Fail	Q08
Phenanthrene	M16-Se10427	NCP	%	103	70-130	Pass	
Pyrene	M16-Se10427	NCP	%	92	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	Z16-Se13181	NCP	%	124	70-130	Pass	
4.4'-DDE	Z16-Se13181	NCP	%	115	70-130	Pass	
4.4'-DDT	Z16-Se13181	NCP	%	104	70-130	Pass	
a-BHC	Z16-Se13181	NCP	%	119	70-130	Pass	
Aldrin	Z16-Se13181	NCP	%	123	70-130	Pass	
b-BHC	Z16-Se13181	NCP	%	119	70-130	Pass	
d-BHC	Z16-Se13181	NCP	%	128	70-130	Pass	
Dieldrin	Z16-Se13181	NCP	%	125	70-130	Pass	
Endosulfan I	Z16-Se13181	NCP	%	113	70-130	Pass	
Endosulfan II	Z16-Se13181	NCP	%	107	70-130	Pass	
Endosulfan sulphate	Z16-Se13181	NCP	%	116	70-130	Pass	
Endrin	Z16-Se13181	NCP	%	117	70-130	Pass	
Endrin aldehyde	Z16-Se13181	NCP	%	102	70-130	Pass	
Endrin ketone	Z16-Se13181	NCP	%	126	70-130	Pass	
g-BHC (Lindane)	Z16-Se13181	NCP	%	123	70-130	Pass	
Heptachlor	Z16-Se13181	NCP	%	107	70-130	Pass	
Heptachlor epoxide	Z16-Se13181	NCP	%	113	70-130	Pass	
Hexachlorobenzene	Z16-Se13181	NCP	%	105	70-130	Pass	
Methoxychlor	Z16-Se13181	NCP	%	111	70-130	Pass	
Spike - % Recovery				1	 1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	M16-Se10769	NCP	%	96	70-130	Pass	
Spike - % Recovery					I		
Heavy Metals	i			Result 1			
Arsenic	M16-Se10336	NCP	%	85	75-125	Pass	
Cadmium	M16-Se10336	NCP	%	81	75-125	Pass	
Chromium	M16-Se10336	NCP	%	85	75-125	Pass	
Copper	M16-Se10336	NCP	%	91	75-125	Pass	
Lead	M16-Se10336	NCP	%	81	75-125	Pass	
Mercury	M16-Se10326	NCP	%	94	70-130	Pass	
Nickel	M16-Se10336	NCP	%	77	75-125	Pass	
Zinc	M16-Se10326	NCP	%	82	75-125	Pass	

Test Lab Sample ID		QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate							1		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M16-Se10767	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M16-Se10768	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M16-Se10768	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M16-Se10768	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate							1		
BTEX				Result 1	Result 2	RPD			
Benzene	M16-Se10767	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M16-Se10767	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M16-Se10767	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M16-Se10767	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M16-Se10767	NCP	mg/kg	0.2	0.1	41	30%	Fail	Q15
Xylenes - Total	M16-Se10767	NCP	mg/kg	0.4	< 0.3	42	30%	Fail	Q15
Duplicate									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M16-Se10767	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M16-Se10767	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	5			Result 1	Result 2	RPD			
Acenaphthene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M16-Se10426	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate							1		
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M16-Se10404	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate												
Organochlorine Pesticides				Result 1	Result 2	RPD						
Heptachlor	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass				
Heptachlor epoxide	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass				
Hexachlorobenzene	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass				
Methoxychlor	M16-Se10404	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass				
Toxaphene	M16-Se10404	NCP	mg/kg	< 1	< 1	<1	30%	Pass				
Duplicate												
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD						
TRH >C10-C16	M16-Se10768	NCP	mg/kg	< 50	< 50	<1	30%	Pass				
TRH >C16-C34	M16-Se10768	NCP	mg/kg	< 100	< 100	<1	30%	Pass				
TRH >C34-C40	M16-Se10768	NCP	mg/kg	< 100	< 100	<1	30%	Pass				
Duplicate												
Heavy Metals				Result 1	Result 2	RPD						
Arsenic	M16-Se10336	NCP	mg/kg	10	10	2.0	30%	Pass				
Cadmium	M16-Se10336	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass				
Chromium	M16-Se10336	NCP	mg/kg	6.4	6.4	<1	30%	Pass				
Copper	M16-Se10336	NCP	mg/kg	15	15	1.0	30%	Pass				
Lead	M16-Se10336	NCP	mg/kg	15	14	3.0	30%	Pass				
Mercury	M16-Se10326	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass				
Nickel	M16-Se10336	NCP	mg/kg	14	15	5.0	30%	Pass				
Zinc	M16-Se10336	NCP	mg/kg	42	42	1.0	30%	Pass				
Duplicate												
				Result 1	Result 2	RPD						
% Moisture	M16-Se10426	NCP	%	22	21	6.0	30%	Pass				

Quality Control Analyte Summary Compliance

The table below is the actual occurrence of QC performed on the batch of samples within this report and as defined below

Analysis	Samples Analysed	Laboratory Duplicates Reported	Laboratory Matrix Spikes Reported	Method Blanks Reported	Laboratory Control Samples Reported
BTEX	1	1	1	1	1
Total Recoverable Hydrocarbons - 1999 NEPM	1	1	1	1	1
Total Recoverable Hydrocarbons - 2013 NEPM	1	1	1	1	1
Polycyclic Aromatic Hydrocarbons	1	1	1	1	1
Organochlorine Pesticides	1	1	1	1	1
Heavy Metals	1	1	1	1	1
% Moisture	1	1	NA	NA	NA

Quality Control Parameter Frequency Compliance follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure April 2011, Schedule B3, Guideline on Laboratory Analysis of Potentially Contaminated Soils and US EPA SW-846 Chapter 1: 'Quality Control'.

It comprises the following when a laboratory process batch is deemed to consist of up to 20 samples that are similar in terms of matrix and test procedure, and are processed as one unit for QC purposes. If more than 20 samples are being processed, they are considered as more than one batch.

Method blank

One method blank per process batch.

Laboratory duplicate

There should be at least one duplicate per process batch, or two duplicates if the process batch exceeds 10 samples.

Laboratory control sample (LCS)

There should be at least one LCS per process batch.

Matrix spikes

There should be one matrix spike per matrix type per process batch.

🔅 eurofins

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q08	The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya	Analytical Services Manager
Alex Petridis	Senior Analyst-Metal (VIC)
Alex Petridis	Senior Analyst-Organic (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Huong Le	Senior Analyst-Inorganic (VIC)
Joseph Edouard	Senior Analyst-Organic (VIC)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

o-Logix Ptv	Geo-Logix		Proj	ject M	lanag	ler:	CHAIN C	IF CI	US	TO	YC		Page 1 of Purchase Order No: PO1492				of <u>1</u>		
ilding Q2, Le	vel 3 Unit 2309/4		Con	tact E	Email	:	tgunns@geo-logix.com.au						Quote	Reference	e: n/a	a			
W 2102	vaniewood		Proj	ject N	ame:		80 Echands	00	P	NE			Invoid	e to:	ac	counts@g	eo-logi	ix.com	m.au
N: 86 116 8	92 936		Proj	ject N	umbe	ег:	1601067 D	ate Sut	mitt	ed: 4	9-9	1-16	TAT	equired:		STD			
(02) 9979 17	22							100	Sec. 1	-	-	1	NALV			D		-	
	1 1			Ma	atrix				-						ZUINL				
Lab ID	Sample ID	Date	soil	Vater	Vir	aint / ACM	Comments	39	HOLD	Brestus			ر مارید.						Eurofins MGT Suite Codes
	TSI	Duto	X	2	-		Send to nach	X		4.				+++	+++	+-+-+		-	B1 TRH/BTEXN
			1		-	-	or producate		-	1				1		+			B1A TRH/MAH
					-		105 Mprican	+		-									B2 TRH/BTEXN/Pb
					-														B3 PAH/Phenols
		•						- E	-						-	D			B4 TRH/BTEXN/PAH
									-							600	3-		B4A TRH/BTEXN/PAH/Phenois
									-		_					1			B5 TRH/BTEXN/M7
									-			-	-						B7 TRH/BTEXN/PAH/M8
					_	-		_			_						_		B7A TRH/BTEXN/PAH/Phenols/M8
						_	2.00												B8 TRH/VOC/PAH/M8
							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1												B9 TRH/BTEXN/PAH/OCP/M8
																			B10 TRH/BTEXN/PAH/OCP/OPP/M8
										•									B11A B11/Alkalinity
							N												B11B B11/EC/TDS
																			B12 TRH/BTEXN/Oxygenates/Ethanol
					-	-													B12A TRH/BTEXN/Oxygenates
					-	-		-									-		B14 OCP/OPP
			-	-										++-		+-+-+			B15 OCP/OPP/PCB
					-			-		-									B16 TDS/SO4/CH4/Alk/BOD/COD/HPC/CUB
			-			+							_	-					B17 SO4/NO3/Fe++/HPC/CUB
								_			_								B18 CI-/SO4/pH
					_	_		_											B19 N/P/K B20 CEC/%ESP/Ca/Ma/Na/K
																			R21 %Fe/ CEC/ pH(CaCl2)/ TOC/ % Clav

			CHAIN OF C	USTODY			
Relinquished by: <u>B</u>	20 Real Date/Time: 9	1/9/16 sig	nature:	Received by: Khuyag	Date/Time:	Signature:	BK
Q3.2.1 QF_024 Eurofins MGT Chain of Custody	Ree: Signal	9.9.11 8	e DAY	mer welling	Du to	515294	120920/Charles 200

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

 Melbourne

 3-5 Kingston Town Close

 Oakleigh Vic 3166

 Phone : +61 3 8564 5000

 NATA # 1261

 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Company name:	Geo-Logix P/L
Contact name: Project name: Project ID: COC number: Turn around time: Date/Time received: Eurofins mgt reference:	Tim Gunns 80 EDMONDSON AVE 1601067 Not provided 5 Day Sep 12, 2016 8:10 AM 515294

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 9.8 degrees Celsius.
- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Tim Gunns - tgunns@geo-logix.com.au.

38 Years of Environmental Analysis & Experience

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Coi Ad	mpany Name: dress: Diect Name:	Geo-Logix P, Bld Q2 Level Warriewood NSW 2102 80 EDMOND	/L 3, 2309/4 Da)SON AVE	ydream St			Ore Re Ph Fax	order No.: eport #: hone: ax:	PO1498 515294 02 9979 1722 02 9979 1222		R D P C	eceived: ue: riority: ontact Name:	Sep 12, 2016 8:10 AM Sep 19, 2016 5 Day Tim Gunns
Pro	oject ID:	1601067								Eu	urofins	mgt Analytical S	Services Manager : Nibha Vaidya
Sample Detail							Eurofins mgt Suite B9						
Melb	ourne Laborato	ry - NATA Site	<u># 1254 & 142</u>	71		Х	Х	_					
Syar Brist	bane Laboratory	- NATA Site # 1	20794					-					
External Laboratory								1					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	TS1	Sep 09, 2016		Soil	M16-Se10507	Х	Х						
Test	Counts					1	1						

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Tim Gunns

Report Project name Project ID Received Date **519059-S** AUSTRAL PHASE 2 1601114B Oct 11, 2016

			TS2 - COMP
Sample Matrix			Soil
Eurofins mgt Sample No.			M16-Oc12555
Date Sampled			Not Provided
Test/Reference	LOR	Unit	
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	0.08
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05
Toxaphene	1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	148
Tetrachloro-m-xylene (surr.)	1	%	68
Heavy Metals			
Arsenic	2	mg/kg	35
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	89
Copper	5	mg/kg	36
Lead	5	mg/kg	74
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	11
Zinc	5	mg/kg	49
% Moisture	1	%	12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Melbourne	Oct 14, 2016	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Metals M8	Melbourne	Oct 14, 2016	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Oct 14, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

web : www.eurofins.com.au

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 B

 Unit F3, Building F
 1/

 16 Mars Road
 M

 Lane Cove West NSW 2066
 P

 Phone: +61 2 9900 8400
 N

 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Cor Ado Pro Pro	Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102Project Name:AUSTRAL PHASE 2Project ID:1601114B								0.: * :	PO1548 Received: Oct 11, 2016 8:30 AM 519059 Due: Oct 18, 2016 02 9979 1722 Priority: 5 Day 02 9979 1222 Contact Name: Tim Gunns	
		Sa	mple Detail			НОГД	Organochlorine Pesticides	Metals M8	Moisture Set		
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х		
Sydn	ey Laboratory	- NATA Site # 1	8217								
Brisb	ane Laborator	y - NATA Site #	20794								
Exter	nal Laboratory	Comula Data	Comulin	Matrix							
NO	Sample ID	Sample Date	Time	watrix							
1	TS2	Not Provided		Soil	M16-Oc08611	Х					
2	TS2 - COMP	Not Provided		Soil	M16-Oc12555		Х	Х	Х		
Test	Counts					1	1	1	1		

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

eurofins mgt

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		-	 			
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank		-				
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery		-				
Organochlorine Pesticides						
4.4'-DDD	%	129		70-130	Pass	
4.4'-DDE	%	98		70-130	Pass	
4.4'-DDT	%	92		70-130	Pass	
a-BHC	%	109		70-130	Pass	
Aldrin	%	116		70-130	Pass	
b-BHC	%	106		70-130	Pass	
d-BHC	%	114		70-130	Pass	
Dieldrin	%	109		70-130	Pass	
Endosulfan I	%	121		70-130	Pass	
Endosulfan II	%	115		70-130	Pass	
Endosulfan sulphate	%	125		70-130	Pass	
Endrin	%	109		70-130	Pass	
Endrin aldehyde	%	119		70-130	Pass	
Endrin ketone	%	113		70-130	Pass	
g-BHC (Lindane)	%	111		70-130	Pass	
Heptachlor	%	103		70-130	Pass	
Heptachlor epoxide	%	122		70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene			%	105			70-130	Pass	
Methoxychlor			%	94			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	108			80-120	Pass	
Cadmium			%	119			80-120	Pass	
Chromium			%	110			80-120	Pass	
Copper			%	108			80-120	Pass	
Lead			%	111			80-120	Pass	
Mercury			%	109			75-125	Pass	
Nickel			%	109			80-120	Pass	
Zinc	I		%	108			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				-					
Organochlorine Pesticides				Result 1					
4.4'-DDD	A16-Oc06428	NCP	%	123			70-130	Pass	
4.4'-DDE	A16-Oc06428	NCP	%	127			70-130	Pass	
4.4'-DDT	A16-Oc06428	NCP	%	88			70-130	Pass	
a-BHC	A16-Oc06428	NCP	%	118			70-130	Pass	
Aldrin	A16-Oc06428	NCP	%	121			70-130	Pass	
b-BHC	A16-Oc06428	NCP	%	113			70-130	Pass	
d-BHC	A16-Oc06428	NCP	%	125			70-130	Pass	
Dieldrin	A16-Oc06428	NCP	%	118			70-130	Pass	
Endosulfan I	A16-Oc06428	NCP	%	122			70-130	Pass	
Endosulfan II	A16-Oc06428	NCP	%	116			70-130	Pass	
Endosulfan sulphate	A16-Oc06428	NCP	%	127			70-130	Pass	
Endrin	A16-Oc06428	NCP	%	116			70-130	Pass	
Endrin aldehyde	A16-Oc06428	NCP	%	120			70-130	Pass	
Endrin ketone	A16-Oc06428	NCP	%	130			70-130	Pass	
g-BHC (Lindane)	A16-Oc06428	NCP	%	119			70-130	Pass	
Heptachlor	A16-Oc06428	NCP	%	113			70-130	Pass	
Heptachlor epoxide	A16-Oc06428	NCP	%	127			70-130	Pass	
Hexachlorobenzene	A16-Oc06428	NCP	%	113			70-130	Pass	
Methoxychlor	A16-Oc06428	NCP	%	94			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1				_	
Arsenic	M16-Oc12206	NCP	%	108			75-125	Pass	
	M16-Oc12206	NCP	%	108			75-125	Pass	
Chromium	M16-Oc12206	NCP	%	102			75-125	Pass	
Copper	M16-0c12206	NCP	%	116			75-125	Pass	
Lead	M16-Oc12206	NCP	%	113			75-125	Pass	
Niekol	M16-0c12206	NCP	%	102			70-130	Pass	
	M16 Oc12206		<u>%</u>	102			75-125	Pass	
Tost			70	Posult 1			Acceptance	Pass	Qualifying
Duplicato	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Organochlorine Pesticides				Result 1	Result 2	RbD			
Chlordanes - Total	M16-Oc12555	CP	ma/ka			~1	30%	Pace	
4.4'-DDD	M16-Oc12555	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDF	M16-Oc12555	CP	ma/ka	0.08	0.09	4.0	30%	Pass	
4.4'-DDT	M16-Oc12555	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M16-Oc12555	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M16-Oc12555	CP	mg/ka	< 0.05	< 0.05	<1	30%	Pass	
	,		3.3						

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	•								
Organochlorine Pesticides	_			Result 1	Result 2	RPD			
b-BHC	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M16-Oc12555	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				-					
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M16-Oc12204	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M16-Oc12204	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M16-Oc12204	NCP	mg/kg	8.1	7.0	14	30%	Pass	
Copper	M16-Oc12204	NCP	mg/kg	5.7	5.7	1.0	30%	Pass	
Lead	M16-Oc12204	NCP	mg/kg	< 5	5.1	9.0	30%	Pass	
Mercury	M16-Oc12204	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M16-Oc12204	NCP	mg/kg	6.8	6.0	13	30%	Pass	
Zinc	M16-Oc12204	NCP	mg/kg	21	22	3.0	30%	Pass	
Duplicate							1		
	1			Result 1	Result 2	RPD			
% Moisture	M16-Oc12830	NCP	%	15	13	10	30%	Pass	

🔅 eurofins

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Authorised By

Nibha Vaidya Alex Petridis Alex Petridis Huong Le Joseph Edouard Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Inorganic (VIC) Senior Analyst-Organic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Logix Pty L	td		Proj	ect N	lana Ema	ger: il:		tgunns@geo-logix.com.au				-	~			Quote	e Refe	Order erenc	e:	161	0060	GLX						
Iream St, W	arriewood		Proi	ect N	lame	2:		Austral Phase 2							10	Invoid	e to:			accounts@geo-logix.com.au			u					
: 86 116 892	936		Proi	ect N	Jumi	per:		1601114B Da	ate Su	bmit	ted:	07	-10-16			TAT r	equir	ed:		ST	C							
2) 9979 172	2									-		-	1				SIS	REC	2111	REI)			-				
				M	atri	x			-	T	T	T	1.1					T				T	-		T		· · · · · · · · · · · · · · · · · · ·	
ah ID	Sample ID	Data	oil	Vater	ir	aint / ACM	Other	Comments		COMPOSITE	OCP/M8		6														E	urofins MGT Suite Codes
	TS2	05-10-16	X	5	A	-	-	END TO MELBOURNE AS TRIPLIC	CAT		X						-		+	T				-	1		B1 TRH/BTEX	N
						-			+	1	T	1				-	-	-	1	1			-		1		B1A TRH/MAH	N/Pb
			-	-				· · · ·		1	T	T					-	-	1					-			B2A TRH/MAH/	Рb
			+								T	T					-	1		1				1	1		B3 PAH/Phen	ols
			+							-	T	1						1	1						T		B4 TRH/BTEX	N/PAH N/PAH/Phenols
		1	+						-	1	1															-	B5 TRH/BTEX	N/M7
						_		- الم		1	T	T						T									B6 TRH/BTEX	N/M8
			1	-				1	1812		-	1															B7 TRH/BTE	N/PAH/M8 N/PAH/Phenols/M8
			1						-			1															B8 TRH/VOC	PAH/M8
			-		-				-	-	T																B9 TRH/BTE)	N/PAH/OCP/M8
			1								100	4	-														B10 TRH/BTE	(N/PAH/OCP/OPP/M8 10/Cl/SO4/CO3/HCO3/NH3/N0
			-			-			-			1															B11A B11/Alkali	nity
7.00	\		-	-		-				-		1						-	1								B11B B11/EC/TI	os
			1	-		-			-		-	1						-		1							B12 TRH/BTE	(N/Oxygenates/Ethanol
			-			-			-	-	-	+						-		1							B13 OCP/PCB	(WOXygenates
				-		-	-		-		-	+		-			-	+	-	1	1				1	T	B14 OCP/OPF	
					-				-	-	+	+			-		-	+	-	1	1				-	1	B15 OCP/OPP	/PCB
					-		-		-		+	- 4		-	-		-	-	-	1	1		-		1	1	B16 TDS/SO4	'CH4/AIK/BOD/COD/HPC/CUE /Fe++/HPC/CUB
<u></u>				-	-				-	×	+	-		+	-		-	-	+	-	+				-	1	B18 CI-/SO4/p	н
			+	-	-	-	-		-		+	+	++		-				-	+	1	-			-	1	B19 N/P/K	
			+-		-	-	-		+		-	+			-		-	1	-	-	+				+	+	B20 CEC/%ES	P/Ca/Ma/Na/K
			1								_	_			-		-1	1	-	_	-				_		R21 %Fe/ CEC	0/ pH(CaCl2)/ TOC/ % Clay
								an and the second second		CH	AIN	I C	FCUS	STOL	Y		1				-12.00	-			- lais		terration of the	and the second
	T	,				-			1	1	_	-	1			/	M	h	~		1.2		2	-10	-1	6	Cianoluse	
Rel	nquished by:		D;	ate/Ti	ime:	0	- 1	Signature:	1				- /	Receive	a by:	-		- (to	ate/11	me:						

web : www.eurofins.com.au

Melbourne

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Company name.	Geo-Logix F/L
Contact name:	Tim Gunns
Project name:	AUSTRAL PHASE 2
Project ID:	1601114B
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Oct 11, 2016 8:30 AM
Eurofins mgt reference:	519059

Coo Logix D/

Sample information

Company pama

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 11.9 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Tim Gunns - tgunns@geo-logix.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

38 Years of Environmental Analysis & Experience

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Cor Ado Pro Pro	Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102Project Name:AUSTRAL PHASE 2 1601114B							der Ne port # one: k:	D.: !:	PO1548 519059 02 9979 1722 02 9979 1222 Eurof	Received: Due: Priority: Contact Name: ins mgt Analytical Se	Oct 11, 2016 8:30 AM Oct 18, 2016 5 Day Tim Gunns ervices Manager : Nibha Vaidya
		Sa	mple Detail			HOLD	Organochlorine Pesticides	Metals M8	Moisture Set			
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х			
Sydn	ey Laboratory	NATA Site # 1	8217									
Brisb	bane Laboratory	/ - NATA Site #	20794									
No	Sample ID	Sample Date	Sampling	Matrix								
	Campie ID	Campie Date	Time	Matrix								
1	TS2	Not Provided		Soil	M16-Oc08611	х						
2	TS2 - COMP	Not Provided		Soil	M16-Oc12555		Х	Х	Х			
Test	Counts					1	1	1	1			

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Tim Gunns

Report Project name Project ID Received Date **519059-S** AUSTRAL PHASE 2 1601114B Oct 11, 2016

			TS2 - COMP
Sample Matrix			Soil
Eurofins mgt Sample No.			M16-Oc12555
Date Sampled			Not Provided
Test/Reference	LOR	Unit	
Organochlorine Pesticides			
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	0.08
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05
Toxaphene	1	mg/kg	< 1
Dibutylchlorendate (surr.)	1	%	148
Tetrachloro-m-xylene (surr.)	1	%	68
Heavy Metals			
Arsenic	2	mg/kg	35
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	89
Copper	5	mg/kg	36
Lead	5	mg/kg	74
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	11
Zinc	5	mg/kg	49
% Moisture	1	%	12

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Melbourne	Oct 14, 2016	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Metals M8	Melbourne	Oct 14, 2016	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
% Moisture	Melbourne	Oct 14, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

web : www.eurofins.com.au

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271
 Sydney
 B

 Unit F3, Building F
 1/

 16 Mars Road
 M

 Lane Cove West NSW 2066
 P

 Phone: +61 2 9900 8400
 N

 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102Project Name:AUSTRAL PHASE 2 1601114B							Or Re Ph Fa	der N port # one: x:	0.: * :	PO1548 Received: Oct 11, 2016 8:30 AM 519059 Due: Oct 18, 2016 02 9979 1722 Priority: 5 Day 02 9979 1222 Contact Name: Tim Gunns	
		Sa	mple Detail			НОГД	Organochlorine Pesticides	Metals M8	Moisture Set		
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х		
Sydn	ey Laboratory	- NATA Site # 1	8217								
Brisb	ane Laborator	y - NATA Site #	20794								
External Laboratory											
NO	Sample ID	Sample Date	Time	watrix							
1	TS2	Not Provided		Soil	M16-Oc08611	Х					
2	TS2 - COMP	Not Provided		Soil	M16-Oc12555		Х	Х	Х		
Test Counts							1	1	1		

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

eurofins mgt

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		-	 			
Organochlorine Pesticides						
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-BHC	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-BHC	mg/kg	< 0.05		0.05	Pass	
d-BHC	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05		0.05	Pass	
Heptachlor	mg/kg	< 0.05		0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05		0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05		0.05	Pass	
Methoxychlor	mg/kg	< 0.05		0.05	Pass	
Toxaphene	mg/kg	< 1		1	Pass	
Method Blank		-				
Heavy Metals						
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery		-				
Organochlorine Pesticides						
4.4'-DDD	%	129		70-130	Pass	
4.4'-DDE	%	98		70-130	Pass	
4.4'-DDT	%	92		70-130	Pass	
a-BHC	%	109		70-130	Pass	
Aldrin	%	116		70-130	Pass	
b-BHC	%	106		70-130	Pass	
d-BHC	%	114		70-130	Pass	
Dieldrin	%	109		70-130	Pass	
Endosulfan I	%	121		70-130	Pass	
Endosulfan II	%	115		70-130	Pass	
Endosulfan sulphate	%	125		70-130	Pass	
Endrin	%	109		70-130	Pass	
Endrin aldehyde	%	119		70-130	Pass	
Endrin ketone	%	113		70-130	Pass	
g-BHC (Lindane)	%	111		70-130	Pass	
Heptachlor	%	103		70-130	Pass	
Heptachlor epoxide	%	122		70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene			%	105			70-130	Pass	
Methoxychlor			%	94			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	108			80-120	Pass	
Cadmium			%	119			80-120	Pass	
Chromium			%	110			80-120	Pass	
Copper			%	108			80-120	Pass	
Lead			%	111			80-120	Pass	
Mercury			%	109			75-125	Pass	
Nickel			%	109			80-120	Pass	
Zinc	I		%	108			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				-					
Organochlorine Pesticides				Result 1					
4.4'-DDD	A16-Oc06428	NCP	%	123			70-130	Pass	
4.4'-DDE	A16-Oc06428	NCP	%	127			70-130	Pass	
4.4'-DDT	A16-Oc06428	NCP	%	88			70-130	Pass	
a-BHC	A16-Oc06428	NCP	%	118			70-130	Pass	
Aldrin	A16-Oc06428	NCP	%	121			70-130	Pass	
b-BHC	A16-Oc06428	NCP	%	113			70-130	Pass	
d-BHC	A16-Oc06428	NCP	%	125			70-130	Pass	
Dieldrin	A16-Oc06428	NCP	%	118			70-130	Pass	
Endosulfan I	A16-Oc06428	NCP	%	122			70-130	Pass	
Endosulfan II	A16-Oc06428	NCP	%	116			70-130	Pass	
Endosulfan sulphate	A16-Oc06428	NCP	%	127			70-130	Pass	
Endrin	A16-Oc06428	NCP	%	116			70-130	Pass	
Endrin aldehyde	A16-Oc06428	NCP	%	120			70-130	Pass	
Endrin ketone	A16-Oc06428	NCP	%	130			70-130	Pass	
g-BHC (Lindane)	A16-Oc06428	NCP	%	119			70-130	Pass	
Heptachlor	A16-Oc06428	NCP	%	113			70-130	Pass	
Heptachlor epoxide	A16-Oc06428	NCP	%	127			70-130	Pass	
Hexachlorobenzene	A16-Oc06428	NCP	%	113			70-130	Pass	
Methoxychlor	A16-Oc06428	NCP	%	94			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1				_	
Arsenic	M16-Oc12206	NCP	%	108			75-125	Pass	
	M16-Oc12206	NCP	%	108			75-125	Pass	
Chromium	M16-Oc12206	NCP	%	102			75-125	Pass	
Copper	M16-Oc12206	NCP	%	116			75-125	Pass	
Lead	M16-Oc12206	NCP	%	113			75-125	Pass	
Niekol	M16-0c12206	NCP	%	102			70-130	Pass	
	M16 Oc12206		<u>%</u>	102			75-125	Pass	
Tost			70	Posult 1			Acceptance	Pass	Qualifying
Duplicato	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Organochlorine Pesticides				Result 1	Result 2	RbD			
Chlordanes - Total	M16-Oc12555	CP	ma/ka			~1	30%	Pace	
4.4'-DDD	M16-Oc12555	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDF	M16-Oc12555	CP	ma/ka	0.08	0.09	4.0	30%	Pass	
4.4'-DDT	M16-Oc12555	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M16-Oc12555	CP	ma/ka	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M16-Oc12555	CP	mg/ka	< 0.05	< 0.05	<1	30%	Pass	
	,		3.3						

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	•								
Organochlorine Pesticides	_			Result 1	Result 2	RPD			
b-BHC	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M16-Oc12555	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M16-Oc12555	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				-					
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M16-Oc12204	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M16-Oc12204	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M16-Oc12204	NCP	mg/kg	8.1	7.0	14	30%	Pass	
Copper	M16-Oc12204	NCP	mg/kg	5.7	5.7	1.0	30%	Pass	
Lead	M16-Oc12204	NCP	mg/kg	< 5	5.1	9.0	30%	Pass	
Mercury	M16-Oc12204	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M16-Oc12204	NCP	mg/kg	6.8	6.0	13	30%	Pass	
Zinc	M16-Oc12204	NCP	mg/kg	21	22	3.0	30%	Pass	
Duplicate							1		
	1			Result 1	Result 2	RPD			
% Moisture	M16-Oc12830	NCP	%	15	13	10	30%	Pass	

🔅 eurofins

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Authorised By

Nibha Vaidya Alex Petridis Alex Petridis Huong Le Joseph Edouard Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Organic (VIC) Senior Analyst-Inorganic (VIC) Senior Analyst-Organic (VIC)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Logix Pty L	td		Proj	ect N	lana Ema	ger: il:		tgunns@geo-logix.com.au				-	~			Quote	e Refe	Order erenc	e:	161	0060	GLX						
Iream St, W	arriewood		Project Name:					Austral Phase 2								Invoice to:				accounts@geo-logix.com.au				om.a	u			
: 86 116 892	936		Project Number:			per:		1601114B Da	ate Su	ate Submitted:			07-10-16			TAT r	equir	ed:		STD								
2) 9979 172	2									-		-	1				SIS	REC	2111	REI)			-				
				M	atri	x			-	T	T	T	1.1					T				T	-		T		· · · · · · · · · · · · · · · · · · ·	
ah ID	Sample ID	Data	oil	Vater	ir	aint / ACM	Other	Comments		COMPOSITE	OCP/M8		6														E	urofins MGT Suite Codes
	TS2	05-10-16	X	5	A	-	-	END TO MELBOURNE AS TRIPLIC	CAT		X						-		+	T				-	1		B1 TRH/BTEX	N
						-			+	1	T	1				-	-	-	1	1			-		1		B1A TRH/MAH	N/Pb
			-	-				· · · ·		1	T	T					-	-	1					-			B2A TRH/MAH/	Рb
			+								T	T					-	1		1				1	1		B3 PAH/Phen	ols
			+							-	T	1						1	1						T		B4 TRH/BTEX	N/PAH N/PAH/Phenols
		1	+						-	1	1															-	B5 TRH/BTEX	N/M7
						_		- الم		1	T	T						T									B6 TRH/BTEX	N/M8
			1	-				1	1812		-	1															B7 TRH/BTE	N/PAH/M8 N/PAH/Phenols/M8
			1						-			1															B8 TRH/VOC	PAH/M8
			-		-				-	-	T																B9 TRH/BTE)	N/PAH/OCP/M8
			1								100	40	-														B10 TRH/BTE	(N/PAH/OCP/OPP/M8 10/Cl/SO4/CO3/HCO3/NH3/N0
			-			-			-																		B11A B11/Alkali	nity
7.00	\		-	-		-				-		1						-	1								B11B B11/EC/TI	os
			1	-		-			-		-	1						-		1							B12 TRH/BTE	(N/Oxygenates/Ethanol
			-			-			-	-	-	+						-		1							B13 OCP/PCB	(WOXygenates
				-		-	-		-		-	+		-			-	+	-	1	1				1	T	B14 OCP/OPF	
				-	-				-	-	+	+			-		-	+	-	1	1				-	1	B15 OCP/OPP	/PCB
					-		-		-		+	- 4		-	-		-	-	-	1	1		-		1	1	B16 TDS/SO4	'CH4/AIK/BOD/COD/HPC/CUE /Fe++/HPC/CUB
<u></u>				-	-				-	×	+	-		+	-		-	-	+	-	+				-	1	B18 CI-/SO4/p	н
			+	-	-	-	-		-		+	+	++		-				-	+	1	-			-	1	B19 N/P/K	
			+-		-	-	-		+		-	+			-		-	1	-	-	+				+	+	B20 CEC/%ES	P/Ca/Ma/Na/K
			1								_	_			-		-1	1	-	_	-				_		R21 %Fe/ CEC	0/ pH(CaCl2)/ TOC/ % Clay
								an and the second second		CH	AIN	I C	FCUS	STOD	Y		1				-12.00	-			- lais		terration of the	and the second
	T	,				-			1	1		-	1			/	M	h	~		1.2		2	-10	-1	6	Cianoluse	
Rel	nquished by:		D;	ate/Ti	ime:	0	- 1	Signature:	1				- /	Receive	a by:	-		- (to	ate/11	me:						

web : www.eurofins.com.au

Melbourne

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Company name.	Geo-Logix F/L
Contact name:	Tim Gunns
Project name:	AUSTRAL PHASE 2
Project ID:	1601114B
COC number:	Not provided
Turn around time:	5 Day
Date/Time received:	Oct 11, 2016 8:30 AM
Eurofins mgt reference:	519059

Coo Logix D/

Sample information

Company pama

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 11.9 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Tim Gunns - tgunns@geo-logix.com.au.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

38 Years of Environmental Analysis & Experience

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name:Geo-Logix P/LAddress:Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102Project Name:AUSTRAL PHASE 2 1601114B							Orc Rej Pho Fax	der Ne port # one: k:	D.: !:	PO1548 519059 02 9979 1722 02 9979 1222 Eurof	Received: Due: Priority: Contact Name: ins mgt Analytical Se	Oct 11, 2016 8:30 AM Oct 18, 2016 5 Day Tim Gunns ervices Manager : Nibha Vaidya
		Sa	mple Detail			HOLD	Organochlorine Pesticides	Metals M8	Moisture Set			
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х			
Sydn	ey Laboratory	NATA Site # 1	8217									
Brisb	bane Laboratory	/ - NATA Site #	20794									
No	Sample ID	Sample Date	Sampling	Matrix								
	Campie ID	Campie Date	Time	Matrix								
1	TS2	Not Provided		Soil	M16-Oc08611	х						
2	TS2 - COMP	Not Provided		Soil	M16-Oc12555		Х	Х	Х			
Test	Test Counts							1	1			

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102

Attention:

Tim Gunns

Report
Project name
Project ID
Received Date

519965-S ADDITIONAL: AUSTRAL PHASE 2 1601114B Oct 14, 2016

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			S4/0.0-0.15 Soil S16-Oc15458 Oct 05, 2016	S22/0.0-0.15 Soil S16-Oc15459 Oct 05, 2016
Test/Reference	LOR	Unit		
		-		
% Clay	1	%	11	15
Conductivity (1:5 aqueous extract at 25°C)	5	uS/cm	130	33
pH (units)(1:5 soil:CaCl2 extract)	0.1	pH Units	5.1	4.9
Total Organic Carbon	0.1	%	5.6	4.6
% Moisture	1	%	13	12
Heavy Metals				
Iron	20	mg/kg	21000	58000
Heavy Metals				
Iron (%)	0.01	%	2.1	5.8
Ion Exchange Properties				
Cation Exchange Capacity	0.05	meq/100g	19	13

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
NEPM Screen for Soil Classification			
% Clay	Brisbane	Oct 19, 2016	6 Day
- Method: LTM-GEN-7040			
Conductivity (1:5 aqueous extract at 25°C)	Sydney	Oct 19, 2016	7 Day
- Method: LTM-INO-4030			
pH (units)(1:5 soil:CaCl2 extract)	Sydney	Oct 19, 2016	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Total Organic Carbon	Melbourne	Oct 19, 2016	28 Day
- Method: APHA 5310B Total Organic Carbon			
Heavy Metals	Sydney	Oct 20, 2016	180 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Ion Exchange Properties	Melbourne	Oct 19, 2016	
% Moisture	Sydney	Oct 18, 2016	14 Day
- Method: LTM-GEN-7080 Moisture			

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Name: Address:Geo-Logix P/L Bld Q2 Level 3, 2309/4 Daydream St Warriewood NSW 2102Project Name: Project ID:ADDITIONAL: AUSTRAL PHASE 2 1601114B							Or Re Ph Fa	rder No.: PO1547 eport #: 519965 hone: 02 9979 172 ax: 02 9979 122	2 2 Eurofi	Received: Due: Priority: Contact Name: ns mgt Analytical Se	Oct 14, 2016 10:45 AM Oct 21, 2016 5 Day Tim Gunns ervices Manager : Nibha Vaidya
Sample Detail					Moisture Set	NEPM Screen for Soil Classification					
Melbourne Laboratory - NATA Site # 1254 & 14271							Х	_			
Sydn	ney Laboratory	NATA Site # 1	8217			Х	Х	_			
Brisbane Laboratory - NATA Site # 20794							Х	-			
External Laboratory							-				
		Campie Date	Time	matrix							
1	S4/0.0-0.15	Oct 05, 2016		Soil	S16-Oc15458	Х	Х	4			
2 S22/0.0-0.15 Oct 05, 2016 Soil S16-Oc15459					Х	Х					
Fest Counts					2	2					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
coc	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code			
Method Blank										
% Clay	%	< 1			1	Pass				
Conductivity (1:5 aqueous extract at	25°C)		uS/cm	< 5			5	Pass		
Total Organic Carbon			%	< 0.1			0.1	Pass		
Method Blank										
Heavy Metals										
Iron	mg/kg	< 20			20	Pass				
Method Blank										
Ion Exchange Properties										
Cation Exchange Capacity			meq/100g	< 0.05			0.05	Pass		
LCS - % Recovery	LCS - % Recovery									
% Clay			%	110			70-130	Pass		
Total Organic Carbon			%	99			70-130	Pass		
LCS - % Recovery										
Heavy Metals										
Iron	%	91			70-130	Pass				
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Duplicate										
		Result 1	Result 2	RPD						
% Clay	S16-Se23761	NCP	%	28	28	3.0	30%	Pass		
Conductivity (1:5 aqueous extract at 25°C)	S16-Oc15381	NCP	uS/cm	100	110	4.0	30%	Pass		
Total Organic Carbon	S16-Oc15461	NCP	%	3.6	3.4	4.0	30%	Pass		
% Moisture S16-Oc15458 CP				13	12	12	30%	Pass		

🔅 eurofins

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	No
Sample correctly preserved	No
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

mgt

Authorised By

Nibha Vaidya Alex Petridis Huong Le Jonathon Angell Ryan Hamilton Analytical Services Manager Senior Analyst-Metal (VIC) Senior Analyst-Inorganic (VIC) Senior Analyst-Inorganic (QLD) Senior Analyst-Inorganic (NSW)

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.
Esther Yew

From:	Nibha Vaidya
Sent:	Friday, 14 October 2016 10:45 AM
То:	!AU04_CAU001_EnviroSampleNSW
Subject:	Geologix - Additional Analysis

Additional R21 suite (% Fe/ CEC/ pH(CaCl2)/ TOC/ % Clay Content) for the following samples please. Analysis on the discrete samples.

Report	Samples	
518931	\$4 0.2-0.3	
	\$23 0.0-0.15	
518936	S4 0.015	
	S22 015	
518939	S4 0-0.15	
	S21 0-0.15	

Cheers!

Kind Regards,

Nibha Vaidya Analytical Services Manager

Eurofins | mgt Unit F3, Parkview Building 16 Mars Road LANE COVE WEST NSW 2066 AUSTRALIA Phone : +61 2 9900 8415 Mobile : +61 499 900 805 Fax : +61 2 9420 2977

Email : <u>NibhaVaidya@eurofins.com</u> Website : <u>www.eurofins.com.au/environmental-testing</u>

extrolib 14/10/16

579965

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Sample Receipt Advice

Geo-Logix P/L
-INVOICES cc'd
ADDITIONAL: AUSTRAL PHASE 2
1601114B
Not provided
5 Day
Oct 14, 2016 10:45 AM
519965

Sample information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

web : www.eurofins.com.au

- All samples have been received as described on the above COC.
- ☑ COC has been completed correctly.
- \boxtimes Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Additional from report 518936

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to -INVOICES cc'd - accounts@geo-logix.com.au.

38 Years of Environmental Analysis & Experience

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Cor Ade Pro Pro	mpany Name: dress: oject Name: oject ID:	Geo-Logix P, Bld Q2 Level Warriewood NSW 2102 ADDITIONAI 1601114B	′L 3, 2309/4 Da .: AUSTRAL F	ydream St PHASE 2			Ore Re Ph Fa:	r No.: PO1547 Received: Oct 14, 2016 10:45 AM ort #: 519965 Due: Oct 21, 2016 ie: 02 9979 1722 Priority: 5 Day 02 9979 1222 Contact Name: -INVOICES cc'd
	Sample Detail							
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	
Sydn	ney Laboratory	- NATA Site # 1	8217			Х	Х	
Brisk	bane Laboratory	/ - NATA Site #	20794				Х	
	Sample ID	Sample Date	Sampling	Matrix				
NO			Time	INIALI IA				
1	S4/0.0-0.15	Oct 05, 2016		Soil	S16-Oc15458	Х	Х	
2	S22/0.0-0.15	Oct 05, 2016		Soil	S16-Oc15459	Х	Х	
Test	Counts					2	2	

ATTACHMENT G

-	A B C	DE	F	G	н		K	
1	ABC	Normal UCL Stat	tistics for Dat	a Sets with No	on-Detects	J	N	L.
1 2								
2	User Selected Options	s						
3	Date/Time of Computation	24/10/2016 3:43:24 PM						
4	From File	WorkSheet.xls						
6	Full Precision	OFF						
7	Confidence Coefficient	95%						
, o	Number of Bootstrap Operations	2000						
0								
10	Arsenic							
11								
12			General Sta	atistics				
13	Total	Number of Observations	12		Num	ber of Distinct	Observations	9
14		Number of Detects	8			Number of	f Non-Detects	4
15	Nu	umber of Distinct Detects	8		Num	ber of Distinc	t Non-Detects	1
16		Minimum Detect	5.3			Minimu	m Non-Detect	2
17		Maximum Detect	17			Maximu	m Non-Detect	2
18		Variance Detects	18.25			Percent	t Non-Detects	33.33%
19		Mean Detects	8.475				SD Detects	4.272
20		Median Detects	6.7				CV Detects	0.504
21		Skewness Detects	1.499			Ku	rtosis Detects	1.264
22		Mean of Logged Detects	2.046			SD of Lo	gged Detects	0.434
23							and the second se	
24		Normai	GOF Test o	n Detects Only	y			
25	SI	hapiro Wilk Test Statistic	0.774		Shapiro	Wilk GOF Te	est	
26	5% Sh	apiro Wilk Critical Value	0.818	Detecte	ed Data Not No	ormal at 5% Si	gnificance Lev	/el
27		Lilliefors Test Statistic	0.304		Lilliet	ors GOF Test	í	
28	59	% Lilliefors Critical Value	0.313	Detected	Data appear l	Normal at 5%	Significance L	evel
29		Detected Data appear A	pproximate N	Normal at 5%	Significance L	evel		
30								
31	Kaplan-M	eier (KM) Statistics using	Normal Criti	cal Values an	d other Nonpa	arametric UCL	.s	
32		Mean	6.317			Standard	Error of Mean	1.379
33		SD	4.468			95% K	M (BCA) UCL	8.667
34		95% KM (t) UCL	8.793		95% KM	(Percentile Bo	ootstrap) UCL	8.567
35		95% KM (z) UCL	8.585			95% KM Bo	otstrap t UCL	9.656
36	9	0% KM Chebyshev UCL	10.45			95% KM Ch	ebyshev UCL	12.33
37	97.	5% KM Chebyshev UCL	14.93			99% KM Ch	ebyshev UCL	20.04
38								
39			DL/2 Stati	stics				
40	DL/2	Normal			DL/2 Lo	og-Transforme	be	
41		Mean in Original Scale	5.983			Mear	i in Log Scale	1.364
42	050/111	SD in Original Scale	5.016			SL) in Log Scale	1.065
43	95% t U	CL (Assumes normality)	8.584			955	% H-Stat UCL	18.28
44	DL/2 IS	not a recommended metr	nod, provided	tor comparis	ons and histo	rical reasons		
45								
46		050(1(M (4) 110)		L to Use	050/ 1/14	(Deveentile D		0 507
47		95% KWI (I) UCL	0.795		9070 KIVI	(Percentile bo	Joistrap) UCL	100.6
48	Note: Suggestions regardle	a the selection of a $050/1$	ICL are provi	ded to help the	user to color	t the most onr	propriate 05%	HCI
49	Note. Suggestions regarding	g are selection of a 95% U		ize, data distri	bution and elec		nophate 30%	UUL.
50	These recommendations of	are based upon the results	of the simula	ation studies of	immarized in	Singh Maichle	and Lea /20	06)
51	However simulations results	will not cover all Real Wor	Id data sete	for additional in	nsight the use	r may want to	consult a stat	istician
52	nowever, annuationa reaulta	this not cover an ried wor				. may want to	Sonoan a stat	Subidit.
53								

	А	В		C	D	F	F	G	Н	1	J	К				
1				U	Nor	mal UCL St	atistics for [Data Sets v	with Non-De	tects						
2																
3		User S	Selected	d Options	1											
4	Da	te/Time o	of Comp	outation	24/10/2016	3:46:14 PN	1									
5			Fr	om File	WorkSheet	_a.xls										
6			Full Pr	ecision	OFF											
7		Confider	nce Coe	efficient	95%											
8	Number of	of Bootstr	ар Оре	erations	2000											
9																
10																
11	Chromiur	n														
12																
13							General	Statistics								
14				Total N	Number of O	bservations	12			Number	of Distinct C	bservations	9			
15										Number	of Missing C	Observations	0			
16						Minimum	13					Mean	28.17			
17						Maximum	49					Median	23			
18						SD	12.49				SD of	logged Data	0.452			
19					Coefficient	of Variation	0.443					Skewness	0.417			
20																
21							Normal (GOF Test								
22				Sh	apiro Wilk T	est Statistic	0.876			Shapiro Wi	ilk GOF Tes	st				
23				5% Sha	apiro Wilk C	ritical Value	0.859		Data appear Normal at 5% Significance Level							
24					Lilliefors T	Lilliefors Test Statistic 0.244 Lilliefors GOF Test										
25				5%	Lilliefors C	ritical Value	0.256		Data appe	ar Normal a	it 5% Signifie	cance Level				
26						Data appea	ar Normal at	t 5% Signif	icance Leve							
27																
28				050/ 11		As	suming Norr	nal Distrib	ution							
29				95% NO			01.01		95%		Isted for Ski	ewness)	04 50			
30	_				95% Stud	ient's-t UCL	34.64	-	9	5% Adjusted		(Cnen-1995)	34.50			
31			-				[Į.	5% WOUTTe	a-t UCL (Joi	nnson-1978)	34.71			
32							Suggested		_							
33					050/ 844	antia t UCI	Suggested		e							
34					95% Stut	Jents-t UCL	34.04		1	1						
35	No	Du Cuada	otiono	regarding	the coloctiv	of a OE%	LICI are pr	ovided to b	olo the user	to coloct the	o most oppr	opriato 05% 1				
36	INO -	te: Sugge		ndationa	are beed u	non the res	UCL are pr	mulation at	udios summ	arized in Si	e must appr	and loci (200	2)			
37		nese (et	onine		are based u	(03) Howey	er simulatio	ne reculte	will not cove	r all Real M	orld data so	anu iaci (200	<u>~</u>)			
38			anu	i ongri af	Eor add	itional insid	or, simulation	av went to	consult a et	atistician	unu uata se					
39					i or add	nona məiyi		ay want to	consult a Sti	JUGUOIQII.						
40																

1	A B C	D F	F	G	н	1	.I	-	4	
1		UCL Statisti	cs for Data	Sets with	Non-Detects		Ŭ			
2										
3	User Selected Option	s								
4	Date/Time of Computation	24/10/2016 3:47:49 PM								
5	From File	WorkSheet_b.xls								
6	Full Precision	OFF								
7	Confidence Coefficient	95%								
8	Number of Bootstrap Operations	2000								
9										
10										
11	Copper									
12										
13			General	Statistics						
14	Total	Number of Observations	12			Number of	Distinct	Observa	ations	11
15						Number of I	Missing	Observa	ations	0
16		Minimum	11						Mean	24.92
17		Maximum	58					М	edian	20.5
18		SD	13.51				Std. F	Error of	Mean	3.901
19		Coefficient of Variation	0.542					Skev	vness	1.527
20										
21			Normal C	GOF Test						
22	S	hapiro Wilk Test Statistic	0.858			Shapiro Wilk	GOF Te	st		
23	5% SI	napiro Wilk Critical Value	0.859		Data Not	Normal at 5%	Signific	ance Le	vel	
24		Lilliefors Test Statistic	0.189			Lilliefors G	OF Test			
25	5	% Lilliefors Critical Value	0.256		Data appea	ar Normal at 5	% Signif	icance I	∟evel	
26		Data appear Appro	ximate No	rmal at 5%	Significance	Level				
27										
28		Ass	uming Norr	nal Distribu	ution					
29	95% N	ormal UCL			95% l	JCLs (Adjuste	ed for Sk	kewnes	s)	
30		95% Student's-t UCL	31.92		95	% Adjusted-C	LT UCL	(Chen-	1995)	33.17
31					98	5% Modified-t	UCL (Jo	hnson-	1978)	32.21
32										
33			Gamma	GOF Test						
34		A-D Test Statistic	0.312		Anders	on-Darling G	amma G	OF Tes	st	
35		5% A-D Critical Value	0.734	Detected	data appear	Gamma Distr	ributed a	t 5% Siç	gnificar	nce Level
36		K-S Test Statistic	0.153		Kolmogr	ov-Smirnoff (Gamma	GOF Te	est	
37		5% K-S Critical Value	0.246	Detected	data appear	Gamma Distr	ributed a	t 5% Siç	gnificar	nce Level
38		Detected data appear	Gamma Di	stributed at	: 5% Significa	ance Level				
39										
40			Gamma	Statistics						
41		k hat (MLE)	4.548			k star	(bias co	rrected	MLE)	3.467
42		Theta hat (MLE)	5.478			Theta star	(bias co	rrected	MLE)	7.188
43		nu hat (MLE)	109.2			ทเ	u star (bi	as corre	cted)	83.2
44	ML	E Mean (bias corrected)	24.92			ML	.E Sd (bi	as corre	cted)	13.38
45					Ap	proximate Ch	i Square	· Value ((0.05)	63.18
46	Adjus	ted Level of Significance	0.029			Adjus	ted Chi S	Square \	√alue	60.52
47										
48		Assu	uming Gam	ma Distrib	ution					
49	95% Approximate Gamma	UCL (use when n>=50))	32.81		95% Adjus	sted Gamma l	JCL (use	e when r	า<50)	34.25
50										
51			Lognormal	GOF Test						
52	S	hapiro Wilk Test Statistic	0.971		Shapi	ro Wilk Logno	ormal GC	OF Test		
53	5% SI	napiro Wilk Critical Value	0.859		Data appear	Lognormal at	5% Sigr	nificance) Level	
54		Lilliefors Test Statistic	0.127		Lillio	efors Lognorn	nal GOF	Test		
55	5'	% Lilliefors Critical Value	0.256		Data appear	Lognormal at	5% Sigr	nificance	e Level	

	A	В	С	D	E	F	G	Н	1	J	К	L		
56				C	ata appear	Lognormal	at 5% Signif	icance Lev	el					
57														
58						Lognorma	I Statistics							
59			N	linimum of L	ogged Data	2.398				Mean of	logged Data	3.102		
60			М	aximum of L	ogged Data	4.06				SD of	logged Data	0.483		
61														
62					Assu	ming Logno	rmal Distrib	ution						
63				9	95% H-UCL	34.04			90% C	hebyshev (I	MVUE) UCL	35.31		
64			95% C	hebyshev (N	AVUE) UCL	40.1			97.5% C	hebyshev (I	MVUE) UCL	46.75		
65			99% C	hebyshev (N	IVUE) UCL	59.82								
66														
67	Nonparametric Distribution Free UCL Statistics													
68	Data appear to follow a Discernible Distribution at 5% Significance Level													
69														
70					Nonpara	ametric Dist	tribution Fre	e UCLs						
71				959	% CLT UCL	31.33				95% Ja	ckknife UCL	31.92		
72			95% 5	Standard Bo	otstrap UCL	31.2		95% Bootstrap-t UCL						
73			95	i% Hall's Bo	otstrap UCL	56.99			95% Pe	ercentile Bo	otstrap UCL	31.75		
74			9	5% BCA Bo	otstrap UCL	32.92								
75			90% Che	byshev(Mea	an, Sd) UCL	36.62			95% Che	byshev(Mea	an, Sd) UCL	41.92		
76			97.5% Che	>byshev(Mea	an, Sd) UCL	49.28			99% Che	byshev(Mea	an, Sd) UCL	63.73		
77						_								
78						Suggested	UCL to Use							
79				95% Stuc	lent's-t UCL	31.92				T		_		
80		-		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -										
81	Note:	Suggestic	ins regarding	g the selection	on of a 95%	UCL are pro	ovided to he	Ip the user	to select the	e most appro	opriate 95% (UCL.		
82	The	ese recom	mendations	are based u	pon the resu	ilts of the si	mulation stu	dies summa	arized in Sir	igh, Singh,	and laci (200	2)		
83			and Singh a	nd Singh (20	03). Howeve	er, simulatio	ns results w	III not cover	all Real Wo	orid data sei	tS.			
84				For add	itional insigh	it the user m	ay want to c	onsult a sta	itistician.					
85														

	A B C	DE	F	G	Н	I K	1
1		UCL Statisti	cs for Data	a Sets with Non-	-Detects		
2							
3	User Selected Option	ns					
4	Date/Time of Computation	24/10/2016 3:48:46 PM					
5	From File	WorkSheet_c.xls					
6	Full Precision	OFF					
7	Confidence Coefficient	t 95%					
8	Number of Bootstrap Operations	2000					
9							
10							
11	Lead						
12							
13			General	Statistics			
14	Tota	I Number of Observations	12		Number of	of Distinct Observations	11
15					Number c	of Missing Observations	0
16		Minimum	25			Mean	40.75
17		Maximum	69			Median	34
18		SD	14.33			Std. Error of Mean	4.138
19		Coefficient of Variation	0.352			Skewness	0.975
20							
21			Normal (GOF Test			
22		Shapiro Wilk Test Statistic	0.875		Shapiro Wil	lk GOF Test	
23	5% 5	Shapiro Wilk Critical Value	0.859	Da	ita appear Normal at	t 5% Significance Level	
24		Lilliefors Test Statistic	0.264		Lilliefors	GOF Test	
25	· · · · · · · · · · · · · · · · · · ·	5% Lilliefors Critical Value	0.256		Data Not Normal at 5	5% Significance Level	
26		Data appear Appro	oximate No	ormal at 5% Sigi	nificance Level		
27		A	under NEAU	n al Diatelhutian			
28	05%	ASS	uming Non	mai Distribution		stad for Okening and	
29	95%	05% Studentia t UCL	10 10		95% UCLS (Adjusted	Sted for Skewness)	40.0
30		95% Students-t OCL	40.10		95% Aujusteu	tuci (chencen 1995)	40.0
31					33 % Woulled	- COCE (JOINISON-1978)	40.00
32			Gamma	GOF Test			
33	2 - 2 Martin and Society Back and Society Back and a second back and a	A-D Test Statistic	0.533		Anderson-Darling	Gamma GOF Test	
34		5% A-D Critical Value	0.73	Detected data	annear Gamma Di	stributed at 5% Significan	nce l evel
30		K-S Test Statistic	0.255	Dotootod dat	Kolmogrov-Smirnof	ff Gamma GOF Test	
30		5% K-S Critical Value	0.245	Data N	ot Gamma Distribute	ed at 5% Significance Le	vel
38		Detected data follow App	r. Gamma	Distribution at 5	5% Significance Lev	/el	
39							
40			Gamma	Statistics			
41		k hat (MLE)	9.84		k st	ar (bias corrected MLE)	7.435
42		Theta hat (MLE)	4.141		Theta sta	ar (bias corrected MLE)	5.481
43		nu hat (MLE)	236.2			nu star (bias corrected)	178.4
44	M	ILE Mean (bias corrected)	40.75		N	ILE Sd (bias corrected)	14.94
45					Approximate C	Chi Square Value (0.05)	148.6
46	Adju	sted Level of Significance	0.029		Adju	usted Chi Square Value	144.4
47							
48		Assu	uming Gam	ma Distribution			
49	95% Approximate Gamma	a UCL (use when n>=50))	48.95	95	5% Adjusted Gamma	a UCL (use when n<50)	50.36
50							
51			Lognorma	GOF Test			
52	ş	Shapiro Wilk Test Statistic	0.924		Shapiro Wilk Log	normal GOF Test	
53	5% S	Shapiro Wilk Critical Value	0.859	Data	appear Lognormal	at 5% Significance Level	
54		Lilliefors Test Statistic	0.237		Lilliefors Logno	ormal GOF Test	
55	5	5% Lilliefors Critical Value	0.256	Data	appear Lognormal	at 5% Significance Level	

Z	A	В	С	D	E	F	G	Н	1	J	K	L
56				C	ata appear l	_ognormal a	at 5% Signi	ficance Lev	rel			
57												
58						Lognormal	Statistics					
59			N	/linimum of L	ogged Data	3.219				Mean of I	ogged Data	3.656
60			M	laximum of L	ogged Data	4.234		ogged Data	0.328			
61												
62					Assur	ning Logno	rmal Distrib	oution				
63					95% H-UCL	49.56			90% C	hebyshev (N	NVUE) UCL	52.34
64			95% C	Chebyshev (I	MVUE) UCL	57.64			97.5% C	hebyshev (N	WVUE) UCL	64.99
65			99% C	Chebyshev (I	MVUE) UCL	79.42						
66												
67					Nonparamet	ric Distribut	ion Free U	CL Statistic	s			
68			C	Data appear	to follow a D	iscernible [Distribution	at 5% Sign	ificance Lev	rel		
69												
70					Nonpara	ametric Dist	ribution Fre	e UCLs				
71				95	% CLT UCL	47.56				95% Jac	ckknife UCL	48.18
72			95% :	Standard Bo	otstrap UCL	47.25				95% Boot	tstrap-t UCL	50.44
73			95	5% Hall's Bo	otstrap UCL	49.11			95% Pe	ercentile Bo	otstrap UCL	47.42
74			g	95% BCA Bo	otstrap UCL	48						
75			90% Che	ebyshev(Me	an, Sd) UCL	53.16			95% Che	byshev(Mea	an, Sd) UCL	58.79
76			97.5% Che	ebyshev(Me	an, Sd) UCL	66.59			99% Che	byshev(Mea	an, Sd) UCL	81.92
77												
78						Suggested	UCL to Use					
79				95% Stu	dent's-t UCL	48.18						
80		0			6 0500						0.50/	
81	Note:	Suggestic	ons regarding	g the selecti	on of a 95%	UCL are pro	ovided to he	lp the user	to select the	most appro	opriate 95% (JCL.
82	Ihe	ese recom	mendations	are based u	pon the resu	Its of the sir	nulation stu	idies summ	arized in Sir	igh, Singh, a	and laci (200	2)
83			and Singh a	nd Singh (20	JU3). Howeve	er, simulatio	ns results w	ill not cove	rall Real Wo	ona aata set	S.	
84				For add	itional insigh	t the user m	ay want to c	consult a sta	atistician.			
85												

	A B C	DF	F	G	Н		1	ĸ	1
1		UCL Statisti	cs for Data Se	ets with N	Ion-Detects		5	K	
2									
3	User Selected Option	S							
4	Date/Time of Computation	24/10/2016 3:55:39 PM							
5	From File	WorkSheet_d.xls							
6	Full Precision	OFF							_
7	Confidence Coefficient	95%							
8	Number of Bootstrap Operations	2000							
9									
10	Mercury								
11									
12			General Sta	tistics					
13	Total	Number of Observations	12			Number	of Distinct	Observations	3
14		Number of Detects	2				Number o	f Non-Detects	10
15	Nu	umber of Distinct Detects	2			Number	of Distinc	t Non-Detects	1
16		Minimum Detect	0.09				Minimu	m Non-Detect	0.05
17		Maximum Detect	0.15				Maximu	m Non-Detect	0.05
18		Variance Detects	0.0018				Percen	t Non-Detects	83.33%
19		Mean Detects	0.12					SD Detects	0.0424
20		Median Detects	0.12					CV Detects	0.354
21		Skewness Detects	N/A				Ku	rtosis Detects	N/A
22		Mean of Logged Detects	-2.153				SD of Lo	gged Detects	0.361
23									
24		Warning: Da	ta set has onl	y 2 Detec	cted Values.				
25	Thi	is is not enough to compu	ite meaningfu	l or reliat	ole statistics	and estim	ates.		
26									
27									
28		Norma	I GOF Test or	n Detects	Only				
29		Not Enou	igh Data to Pr	erform G	OF Test				
30									
31	Kaplan-M	eier (KM) Statistics using	Normal Criti	cal Value	s and other	Nonparan	netric UCL	_S	
32		Mean	0.0617				Standard	Error of Mean	0.0118
33		SD	0.0288		05		95% K	M (BCA) UCL	N/A
34		95% KM (t) UCL	0.0828		95	% KM (Pe	ercentile B	ootstrap) UCL	N/A
35		95% KM (z) UCL	0.081			y	5% KM Bo	otstrap t UCL	N/A
36	9	0% KM Chebyshev UCL	0.097			9	5% KM Ch	ebyshev UCL	0.113
37	97.	.5% KM Chebyshev UCL	0.135			9	9% KM Ch	ebyshev UCL	0.179
38		Commo COF T	anto on Datas	ted Ober	an ations Onl	h			
39	<u>_</u>	Gamma GOF T	ests on Detet			y .			
40		NOLENOL	Ign Data to Pe	enomi Go	JF Test				
41		Commo S	tatictics on D	atacted D	oto Only				_
42		Gamma S		elected D		ko	tor (hing or	propted MLE)	NIZA
43		K fiat (MLE)	0.00766			K S	tar (bias co	prected MLE)	N/A
44		nu hot (MLE)	62.64			Theta s	ar (bias co	ine corrected)	
45		E Maan (biog corrected)	02.04				ILU Star (D	ias corrected)	N/A
46		E Mean (bias corrected)	N/A				VILE SU (D	las corrected)	N/A
47		Commo	Kaplan Maia	/KM) CH	atiation				
48		Galillia k bot (KM)			austics			pu hot (KM)	100.0
49			4.079			Adjusted		ignificance (R)	0.020
50	Approvimate Chi (Square Value (100.90 ~)	86 69		Adius	nujusied			0.029 93 EE
51	Approximate Chi 3	L[C] (use when n > -50)	0.09	OF	Aujus	tilleted KM		ue (103.63, β)	00.00
52			0.0702	90					0.0011
53		Lognormal GOF	Test on Dete	cted Obs	ervations On	lv			
54		Not From	igh Data to Pr	erform GO	OF Test	,			
20		Hot Ellot							

	A	В	С		D	E	F	-	G	Н	1		J	K		L
56																
57					Log	inormal RC	OS Statis	tics Usin	ng Imput	ed Non-De	etects					
58				Меа	an in O	riginal Scal	e 0.0	338					Mean	in Log Scale	3 -4	4.061
59				S	D in O	riginal Scal	e 0.0	44					SD	in Log Scale	3	1.231
60		95% t UC	CL (assume	es norn	nality c	of ROS data	a) 0.0	566	95% Percentile Bootstrap UCL						- ().0563
61				95% B	BCA Bo	otstrap UC	L 0.0	628					95% Boo	otstrap t UCI	- ().0948
62				95%	H-UCI	L (Log ROS	6) 0.1	28								
63	DL/2 Chatiatian															
64		DL/2 Statistics DL/2 Normal DL/2 Log-Transformed														
65		DL/2 Normal DL/2 Log-1 ransformed Mean in Original Scale 0.0408 Mean in Log Scale -3.433														
66				Mea	an in O	riginal Sca	le 0.0	408					Mean	in Log Scale	* - 4	3.433
67				S	D in O	riginal Scal	le 0.0	391					SD	in Log Scale	;	0.608
68			95% t	UCL (A	Assume	es normality	y) 0.0	611				11 C	95%	H-Stat UCI	. ().059
69			DL/2 i	is not a	тесоп	nmended n	nethod,	provided	for com	parisons a	nd histo	rical	reasons			
70																
71						Nonparam	etric Dis	tribution	Free U	CL Statistic	S					
72				Data	a do no	t follow a I	Discernit	ole Distril	bution a	t 5% Signif	icance L	.evel				
73																
74							Sugge	sted UCI	L to Use	•						
75					95%	5 KM (t) UC	L 0.0	828				95% I	KM (% Boo	otstrap) UC	- N	J/A
76					Warni	ng: One or	more R	ecommei	nded UC	CL(s) not a	vailable!					
77																
78	Note	: Suggestio	ns regardi	ing the	select	on of a 95°	% UCL a	re provid	ed to he	elp the user	to selec	t the	most appr	opriate 95%	UCL	••
79			F	Recomr	mendat	tions are ba	ased upo	n data siz	ze, data	distributior	i, and sk	ewne	SS.			
80	The	se recomm	endations	are ba	ased up	on the res	ults of th	e simulat	tion stud	lies summa	rized in	Singh	i, Maichle,	and Lee (2	U06).	
81	Howev	er, simulatio	ons results	s will n	ot cove	er all Real \	Norld da	ta sets; fo	or additi	onal insight	t the use	r may	want to c	onsult a sta	tistici	an.
82		_														

	A B C D	F	F	G	Н			К					
1	UCL	- Statisti	cs for Data	Sets with N	Ion-Detects		0	IN I					
2													
3	User Selected Options												
4	Date/Time of Computation 24/10/2016 3:56	:57 PM											
5	From File WorkSheet_e.xls	5											
6	Full Precision OFF												
7	Confidence Coefficient 95%												
2	Number of Bootstrap Operations 2000												
q													
10		_											
11	Nickel												
12									+-				
12			General	Statistics									
14	Total Number of Observations 12 Number of Distinct Observations												
14	Number of Missing Obse												
16	Mi	nimum	5.6					Mean	8.425				
10	Max	kimum	14					Median	7.95				
18		SD	2.814				Std.	Error of Mean	0.812				
10	Coefficient of Va	riation	0.334					Skewness	0.952				
20													
20			Normal C	GOF Test									
21	Shapiro Wilk Test Statistic 0.87 Shapiro Wilk GOF Test												
22	5% Shapiro Wilk Critical	Value	0.859		Data appea	r Normal	at 5% Sign	ificance Level					
20	Lilliefors Test S	tatistic	0.194			Lilliefor	s GOF Tes	t					
24	5% Lilliefors Critical	Value	0.256		Data appear Normal at 5% Significance Level								
20	Data appear Normal at 5% Significance Level												
20													
28		Assi	uming Norr	nal Distribu	tion								
20	95% Normal UCL				95% L	ICLs (Ad	usted for S	kewness)					
30	95% Student's	-t UCL	9.884		959	% Adjuste	ed-CLT UCI	L (Chen-1995)	10				
31		-			95	% Modifi	ed-t UCL (J	ohnson-1978)	9.921				
32													
33			Gamma (GOF Test									
34	A-D Test S	tatistic	0.512		Anderso	on-Darlin	g Gamma (GOF Test					
35	5% A-D Critical	Value	0.73	Detected	data appear	Gamma [Distributed a	at 5% Significa	cance Level				
36	K-S Test S	tatistic	0.187		Kolmogre	ov-Smirn	off Gamma	GOF Test					
37	5% K-S Critical	Value	0.245	Detected	data appear	Gamma [Distributed a	at 5% Significa	nce Level				
38	Detected data a	ppear (Gamma Di	stributed at	5% Significa	ince Leve	el						
39													
40			Gamma	Statistics									
41	k hat	(MLE)	10.77	0.77 k star (bias corrected ML									
42	Theta hat	(MLE)	0.782	(orrected MLE)	1.036						
43	nu hat	(MLE)	258.5		nu star (bias corrected)								
44	MLE Mean (bias corr	ected)	8.425		MLE Sd (bias corrected								
45					Ap	oroximate	Chi Squar	e Value (0.05)	163.9				
46	Adjusted Level of Signifi	0.029			A	djusted Chi	Square Value	159.5					
47	· · · · · · · · · · · · · · · · · · ·												
48		Assu	iming Gam	ma Distribu	tion								
49	95% Approximate Gamma UCL (use when n	>=50))	10.04	·	95% Adjus	ted Gamr	na UCL (us	e when n<50)	10.31				
50							100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100						
51			Lognormal	GOF Test									
52	Shapiro Wilk Test S	tatistic	0.907		Shapiro Wilk Lognormal GOF Test								
53	5% Shapiro Wilk Critical	Value	0.859	E	Data appear l	ognorma	al at 5% Sig	nificance Leve					
54	Lilliefors Test S	tatistic	0.17		Lillie	fors Logi	normal GO	F Test					
55	5% Lilliefors Critical	Value	0.256	[Data appear l	Lognorma	al at 5% Sig	nificance Leve					
<u> </u>													

	А	В	С		D	E	F	G	Н	المحا المحاد	J	К	L		
56	Data appear Lognormal at 5% Significance Level														
57															
58		Lognormal Statistics													
59				Mi	nimum of L	ogged Data	1.723				Mean of I	ogged Data	2.084		
60				Ma	ximum of L	ogged Data	2.639				SD of I	ogged Data	0.315		
61															
62	Assuming Lognormal Distribution														
63					1	95% H-UCL	10.15			90% C	hebyshev (N	IVUE) UCL	10.73		
64			95	% Ch	ebyshev (N	AVUE) UCL	11.78			97.5% C	hebyshev (N	IVUE) UCL	13.23		
65			99	% Ch	ebyshev (N	AVUE) UCL	16.09								
66															
67		Nonparametric Distribution Free UCL Statistics													
68	Data appear to follow a Discernible Distribution at 5% Significance Level														
69															
70						Nonpara	ametric Dist	ribution Fre	e UCLs				10102-002		
71					95	% CLT UCL	9.761		95% Jackknife UCL						
72			9	5% St	tandard Bo	otstrap UCL	9.705		95% Bootstrap-t UCL						
73				95%	% Hall's Bo	otstrap UCL	10.63			95% Pe	ercentile Boo	otstrap UCL	9.742		
74			0000	95	% BCA Bo	otstrap UCL	9.967					0.0.1101			
75			90%	Cheb	byshev(Mea	an, Sd) UCL	10.86			95% Che	byshev(Mea	in, Sd) UCL	11.97		
76			97.5%	Chet	byshev(Mea	an, Sd) UCL	13.5			99% Che	byshev(Mea	in, Sd) UCL	16.51		
77							0								
78					050/ 04		Suggested	UCL to Use							
79					95% Stut	ients-tUCL	9.884				r				
80	Matar	Ourseatte		ي م الي	the selection of the			مريا معامم الم			montoner	printe OE9/ 1			
81	Note.	Suggestic	ons rega	raing	the selection		UCL are pro	ovided to ne	ip the user	to select the	a most appro	phate 95% (JUL.		
82	ITE	ese recom	imenuau	ons a	d Cinch (20	port the resu		nulation stu	ules summa		igii, Siligii, a		2)		
83			anu Sing	yn ano	Eor add	itional incide	t the upper m	ns results w	ni not cover	tictician	nu uata set	5.			
84					Por add	iuonai insign	t me user m	ay want to c	onsult a sta	usucian.					
85															

1	A	В	C	D F	F	G	н				ĸ						
1	N			UCL Stati	stics for Dat	ta Sets with N	Ion-Detects						-				
2																	
2		User Sele	cted Options														
4	Date	/Time of Co	omputation	24/10/2016 3:57:49 P	4/10/2016 3:57:49 PM												
5			From File	WorkSheet_f.xls													
6		Ful	I Precision	OFF													
7	(Confidence	Coefficient	95%													
/ Q	Number of	Bootstrap (Operations	2000													
0																	
10																	
11	Zinc																
12																	
13					Genera	I Statistics											
14			Total N	lumber of Observation	is 12		Number of Distinct Observations 12										
15								Numbe	r of Miss	sing Ob	servations	5	0				
16				Minimu	n 19						Mear	1	60.5				
17				Maximu	m 280						Mediar	n	38				
18				S	D 72.06				S	Std. Erre	or of Mear	n	20.8				
19			an de 1946 - A - C	Coefficient of Variation	n 1.191						Skewness	s	3.005				
20																	
21					Normal	GOF Test											
22			Sh	apiro Wilk Test Statist	ic 0.574		5	Shapiro V	Nilk GOI	F Test							
23			5% Sha	apiro Wilk Critical Valu	e 0.859		Data Not	Normal a	t 5% Sig	nifican	ce Level						
24				Lilliefors Test Statist	ic 0.336			Lilliefor	rs GOF 7	Гest							
25			5%	Lilliefors Critical Valu	e 0.256		Data Not Normal at 5% Significance Level										
26				Data No	ot Normal at	5% Significa	nce Level										
27																	
28				A	ssuming No	rmal Distribu	tion										
29			95% No	ormal UCL			95% L	JCLs (Ad	ljusted fo	or Skev	vness)						
30				95% Student's-t UC	ient's-t UCL 97.86 95% Adjusted-CLT UCL (0						hen-1995) 1	114				
31					i.		95	5% Modif	ied-t UCI	L (John	ison-1978) 1	100.9				
32																	
33					Gamma	GOF Test											
34				A-D Test Statist	ic 0.931		Anders	on-Darlir	ıg Gamn	na GOI	F Test						
35				5% A-D Critical Valu	e 0.745	Dat	Data Not Gamma Distributed at 5% Significance Level										
36				K-S Test Statist	ic 0.232		Kolmogr	ov-Smirr	off Gam	ima GC	OF Test						
37				5% K-S Critical Valu	e 0.249	Detected	data appear	Gamma	Distribut	ed at 5	% Signific	ance	e Level				
38			D	etected data follow A	ppr. Gamma	Distribution	at 5% Signi	ficance L	.evel								
39																	
40					Gamma	a Statistics											
41				k hat (MLE	E) 1.588			k	star (bia	s corre	cted MLE)	1.246				
42				Theta hat (MLE	E) 38.1		Theta star (bias corrected M)	48.54				
43				nu hat (MLE	E) 38.11		nu star (bias correct)	29.91				
44			ML	E Mean (bias corrected	d) 60.5		MLE Sd (bias correc)	54.19				
45							Approximate Chi Square Value (0.05)	18.42				
46			Adjuste	ed Level of Significand	e 0.029			A	djusted	Chi Sqi	uare Value	Э	17.06				
47																	
48				A	ssuming Ga	mma Distribu	ition										
49	95	% Approxim	nate Gamma	UCL (use when n>=50)) 98.22		95% Adjus	sted Gam	ma UCL	(use w	/hen n<50) 1	106.1				
50																	
51					Lognorm	al GOF Test											
52			Sh	apiro Wilk Test Statist	ic 0.881		Shapi	ro Wilk L	ognorma	al GOF	Test						
53			5% Sha	apiro Wilk Critical Valu	e 0.859	Γ	Data appear	Lognorm	al at 5%	Signific	cance Lev	el					
54				Lilliefors Test Statist	ic 0.162		Lillie	efors Log	normal (GOF T	est						
55			5%	Lilliefors Critical Valu	e 0.256	[Data appear	Lognorm	al at 5%	Signific	cance Lev	'el					

	А	В	С	D		E	F	G	н	I	J	к	L	
56	Data appear Lognormal at 5% Significance Level													
57														
58	Lognormal Statistics													
59				Minimum	of Logg	ed Data	2.944				Mean of	ogged Data	3.756	
60				Maximum	of Logg		SD of logged Data							
61														
62	Assuming Lognormal Distribution													
63					95%	H-UCL	101.8	90% Chebyshev (MVUE) UCL						
64			95%	Chebyshe	ev (MVL	JE) UCL	111.3			97.5% C	hebyshev (N	IVUE) UCL	135.5	
65	99% Chebyshev (MVUE) UCL 182.9													
66														
67	Nonparametric Distribution Free UCL Statistics													
68	Data appear to follow a Discernible Distribution at 5% Significance Level													
69	*2													
70						Nonpar	ametric Dis	tribution Free	e UCLs					
71					95% C	LT UCL	94.72				95% Jac	ckknife UCL	97.86	
72			95%	6 Standard	Bootst	rap UCL	92.7			190.9				
73				95% Hall's	Bootst	rap UCL	238.3			95% Pe	ercentile Bo	otstrap UCL	96	
74				95% BCA	Bootst	rap UCL	120.4							
75			90% C	hebyshev(Mean, S	Sd) UCL	122.9			95% Che	byshev(Mea	an, Sd) UCL	151.2	
76			97.5% C	hebyshev(Mean, S	Sd) UCL	190.4			99% Che	byshev(Mea	an, Sd) UCL	267.5	
77								1 million - 100 million						
78							Suggested	UCL to Use					~~~~~~	
79			9	5% Adjuste	ed Gam	ma UCL	106.1							
80	_													
81	Note	: Suggesti	ons regard	ing the sel	ection c	of a 95%	UCL are pro	ovided to hel	lp the user	to select the	e most appro	opriate 95%	UCL.	
82	Tł	nese recon	nmendatior	is are base	ed upon	the res	ults of the si	mulation stud	dies summa	arized in Sir	igh, Singh, a	and laci (200	02)	
83			and Singh	and Singh	(2003)	. Howev	er, simulatio	ns results wi	ill not cover	all Real Wo	orld data set	S.		
84				For	additior	hal insigh	nt the user m	ay want to c	onsult a sta	tistician.				
85													_	

GEO-LOGIX PTY LTD

ABN 86 116 892 936

Building Q2, Level 3 Suite 2309, 4 Daydream Street Warriewood NSW 2102

> Phone 02 9979 1722 Fax 02 9979 1222

Email info@geo-logix.com.au Web www.geo-logix.com.au